Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T15:13:45.782Z Has data issue: false hasContentIssue false

Quenching rates and critical densities of c-C3H2

Published online by Cambridge University Press:  12 October 2020

Malek Ben Khalifa
Affiliation:
Laboratoire Aimé-Cotton, Université Paris-Saclay, CNRS, Orsay, France Faculty of Sciences, University Tunis El Manar Campus, 1060 Tunis, Tunisia
Emna Sahnoun
Affiliation:
Laboratoire Aimé-Cotton, Université Paris-Saclay, CNRS, Orsay, France Faculty of Sciences, University Tunis El Manar Campus, 1060 Tunis, Tunisia
Silvia Spezzano
Affiliation:
CAS@MPE, Garching, Germany
Laurent Wiesenfeld
Affiliation:
Laboratoire Aimé-Cotton, Université Paris-Saclay, CNRS, Orsay, France
Kamel Hammami
Affiliation:
Faculty of Sciences, University Tunis El Manar Campus, 1060 Tunis, Tunisia
Olivier Dulieu
Affiliation:
Laboratoire Aimé-Cotton, Université Paris-Saclay, CNRS, Orsay, France
Paola Caselli
Affiliation:
CAS@MPE, Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cyclopropenylidene,, is a simple hydrocarbon, ubiquitous in astrophysical gases, and possessing a permanent electric dipole moment. Its readily observed multifrequency rotational transitions make it an excellent probe for the physics and history of interstellar matter. The collisional properties of with He are presented here. We computed the full Potential Energy Surfaces, and we perform quantum scattering in order to provide rates of quenching and excitation for low to medium temperature regimes. We discuss issues with the validity of the usual Local Thermodynamical Equilibrium assumption, and also the intricacies of the spectroscopy of an asymmetric top. We present the wide range of actual critical densities, as recently observed.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Artur de la Villarmois, E., Kristensen, L. E., Jørgensen, J. K., Bergin, E. A., Brinch, C., Frimann, S., Harsono, D., Sakai, N., & Yamamoto, S. 2018, A&A, 614, A26 Google Scholar
Ben Khalifa, M., Sahnoun, E., Wiesenfeld, L., Khadri, F., Hammami, K., Dulieu, O., Spezzano, S., & Caselli, P. 2019, PCCP, 21, 1443 CrossRefGoogle Scholar
Ben Khalifa, M., Wiesenfeld, L., & Hammami, K. 2019, PCCP, 21, 9996 CrossRefGoogle Scholar
Carvajal, M., Favre, C., Kleiner, I., Ceccarelli, C., Bergin, E., & Fedele, D. 2019 A&A, 627, A65Google Scholar
Guzmán, A. E., Guzmán, V. V., Garay, G., Bronfman, L., & Hechenleitner, F. 2018, ApJS, 236, 45 CrossRefGoogle Scholar
Higuchi, A. E., Sakai, N., Watanabe, Y., López-Sepulcre, A., Yoshida, K., Oya, Y., Imai, M., Zhang, Y., Ceccarelli, C., & Lefloch, B. 2018, ApJS, 236, 52 CrossRefGoogle Scholar
Murillo, N. M., van Dishoeck, E. F., Tobin, J. J., Mottram, J. C., & Karska, A. 2018, A&A, 620, A30 Google Scholar
Schmidt, D. R., Zack, L. N., & Ziurys, L. M. 2018, ApJL, 864, L31 CrossRefGoogle Scholar
Werner, H. J. & Knowles, P. J. 1985, J. Chem. Phys., 82, 5053 CrossRefGoogle Scholar