Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T10:44:02.909Z Has data issue: false hasContentIssue false

Quasars at the Cosmic Dawn: effects on Reionization properties in cosmological simulations

Published online by Cambridge University Press:  08 May 2018

Enrico Garaldi
Affiliation:
Argelander Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany email: [email protected]
Michele Compostella
Affiliation:
Max Planck Institute for Astrophysics, Karl-Schwarzschild Straße 1, 85741 Garching, Germany Max Planck Computing and Data Facility, Gießenbachstraße 2, 85741 Garching, Germany
Cristiano Porciani
Affiliation:
Argelander Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study a model of cosmic reionization where quasars (QSOs) are the dominant source of ionizing photons at all relevant epochs. We employ a suite of adaptive hydrodynamical simulations post-processed with a multi-wavelength Monte Carlo radiative-transfer code and calibrate them in order to accurately reproduce the observed quasar luminosity function and emissivity evolution. Our results show that the QSO-only model fails in reproducing key observables linked to the Helium reionization, as the temperature evolution of the inter-galactic medium (IGM) and the HeII effective optical depth in synthetic Lyα spectra. Nevertheless, we find hints that an increased quasar contribution can explain recent measurements of a large inhomogeneity in the IGM at redshift z ≈ 5. Finally, we devise a method capable of constraining the QSOs contribution to the reionization from the properties of the HeII Lyα forest at z ≈ 3.5.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Becker, G. D., Bolton, J. S., Madau, P., Pettini, et al. 2015, MNRAS, 447, 3402Google Scholar
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., Caruana, J. et al. 2015, ApJ, 811, 140Google Scholar
Chardin, J., Puchwein, E., & Haehnelt, M. G., 2017, MNRAS, 465, 3429Google Scholar
Compostella, M., Cantalupo, S., & Porciani, C., 2013, MNRAS, 435, 3169Google Scholar
Fan, X., Carilli, C. L., & Keating, B., 2006, ARAA, 44, 415Google Scholar
Giallongo, E., Grazian, A., Fiore, F., Fontana, A., Pentericci, L., et al. 2015, A&A, 578, 83Google Scholar
Gnedin, N. Y., Becker, G. D., & Fan, X., 2017, ApJ, 841, 26Google Scholar
Hassan, S., Davé, R., Mitra, S., Finlator, K., Ciardi, B., Santos, M. G., 2017, MNRAS, 473, 227Google Scholar
Kulkarni, G., Choudhury, T. R., Puchwein, E., & Haehnelt, M. G., 2017, MNRAS, 469, 4283Google Scholar
Madau, P. & Haardt, F., 2015, ApJL, 813, 8Google Scholar
McQuinn, M., 2016, ARAA, 54, 313Google Scholar
Mitra, S., Choudhury, T. R., & Ferrara, A., 2018, MNRAS, 473, 1416Google Scholar
Parsa, S., Dunlop, J. S. & McLure, R. J. 2017, arXiv (preprint), 1704.07750Google Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M. et al. 2016, A&A, 594, A13Google Scholar
Planck Collaboration, Aghanim, N., Ashdown, M., Aumont, J. et al. 2016, A&A, 596, A107Google Scholar
Silk, J. & Rees, M. J., 1998, A&A, 331, L1Google Scholar
Teyssier, R. 2002, A&A, 385, 337.Google Scholar
Wyithe, J. S. B. & Loeb, A., 2002, ApJ, 581, 886Google Scholar