Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T10:18:25.030Z Has data issue: false hasContentIssue false

Quasar black hole masses and accretion rates across cosmic time

Published online by Cambridge University Press:  29 March 2021

Michael Brotherton
Affiliation:
Dept. of Physics & Astronomy, University of Wyoming, Laramie, WY 82071, USA email: [email protected]
Jaya Maithil
Affiliation:
Dept. of Physics & Astronomy, University of Wyoming, Laramie, WY 82071, USA email: [email protected]
Adam Myers
Affiliation:
Dept. of Physics & Astronomy, University of Wyoming, Laramie, WY 82071, USA email: [email protected]
Ohad Shemmer
Affiliation:
Department of Physics, University of North Texas, Denton, TX 76203, USA
Brandon Matthews
Affiliation:
Department of Physics, University of North Texas, Denton, TX 76203, USA
Cooper Dix
Affiliation:
Department of Physics, University of North Texas, Denton, TX 76203, USA
Pu Du
Affiliation:
Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, People’s Republic of China
Jian-Min Wang
Affiliation:
Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, People’s Republic of China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Quasar black hole masses are most commonly estimated using broad emission lines in single epoch spectra based on scaling relationships determined from reverberation mapping of small samples of low-redshift objects. Several effects have been identified requiring modifications to these scaling relationships, resulting in significant reductions of the black hole mass determinations at high redshift. Correcting these systematic biases is critical to understanding the relationships among black hole and host galaxy properties. We are completing a program using the Gemini North telescope, called the Gemini North Infrared Spectrograph (GNIRS) Distant Quasar Survey (DQS), that has produced rest-frame optical spectra of about 200 high-redshift quasars (z = 1.5–3.5). The GNIRS-DQS will produce new and improved ultraviolet-based black hole mass and accretion rate prescriptions, as well as new redshift prescriptions for velocity zero points of high-z quasars, necessary to measure feedback.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bentz, M. C., Denney, K. D., Grier, C. J., et al. 2013, ApJ, 767, 149 10.1088/0004-637X/767/2/149CrossRefGoogle Scholar
Boroson, T. 2005, AJ, 130, 381 CrossRefGoogle Scholar
Boroson, T. A. & Green, R. F. 1992, ApJS, 80, 109 10.1086/191661CrossRefGoogle Scholar
Du, P. & Wang, J.-M. 2019, ApJ, 886, 42 CrossRefGoogle Scholar
Du, P., Zhang, Z.-X., Wang, K., et al. 2018, ApJ, 856, 6 10.3847/1538-4357/aaae6bCrossRefGoogle Scholar
Dix, C., Shemmer, O., Brotherton, M. S., et al. 2020, ApJ, 893, 14 10.3847/1538-4357/ab77b6CrossRefGoogle Scholar
Kaspi, S., Smith, P. S., Netzer, H., et al. 2000, ApJ, 533, 631 CrossRefGoogle Scholar
Matthews, B., Shemmer, O., Brotherton, M. S., et al. 2018, American Astronomical Society Meeting Abstracts #232, 318.09Google Scholar
Matthews, B., Shemmer, O., Brotherton, M. S., et al. 2019, American Astronomical Society Meeting Abstracts #233, 243.38Google Scholar
Matthews, B., Shemmer, O., Brotherton, M., et al. 2020, American Astronomical Society Meeting Abstracts, 381.06Google Scholar
Mason, M., Brotherton, M. S., & Myers, A. 2017, MNRAS, 469, 4675 CrossRefGoogle Scholar
Pancoast, A., Brewer, B. J., Treu, T., et al. 2014, MNRAS, 445, 3073 10.1093/mnras/stu1419CrossRefGoogle Scholar
Peterson, B. M. 1993, PASP, 105, 247 CrossRefGoogle Scholar
Peterson, B. M., Ferrarese, L., Gilbert, K. M., et al. 2004, ApJ, 613, 682 CrossRefGoogle Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, A&A 500, 33 Google Scholar
Shen, Y. 2016, ApJ, 817, 55 CrossRefGoogle Scholar
Shen, Y. & Ho, L. C. 2014, Nature, 513, 210 CrossRefGoogle Scholar
Shen, Y., Richards, G. T., Strauss, M. A., et al. 2011, ApJS, 194, 45 CrossRefGoogle Scholar
Tytler, D. & Fan, X.-M. 1992, ApJS, 79, 1 10.1086/191642CrossRefGoogle Scholar
Vestergaard, M. 2002, ApJ, 571, 733 10.1086/340045CrossRefGoogle Scholar
Vestergaard, M. & Peterson, B. M. 2006, ApJ, 641, 689 CrossRefGoogle Scholar
Woo, J.-H., Yoon, Y., Park, S., et al. 2015, ApJ, 801, 38 CrossRefGoogle Scholar