Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T18:38:25.709Z Has data issue: false hasContentIssue false

Quantitative atomic spectroscopy, a review of progress in the optical-UV region and future opportunities

Published online by Cambridge University Press:  12 October 2020

James E. Lawler
Affiliation:
University of Wisconsin – Madison emails: [email protected], [email protected]
Christopher Sneden
Affiliation:
University of Texas – Austin email: [email protected]
Elizabeth A. Den Hartog
Affiliation:
University of Wisconsin – Madison emails: [email protected], [email protected]
John J. Cowan
Affiliation:
University of Oklahoma – Norman email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The development of tunable dye lasers and a simple atomic and ionic beam source for all elements were critical in establishing a reliable absolute scale for atomic transition probabilities in the optical to near UV regions. The laboratory astrophysics program at the University of Wisconsin - Madison (UW) concentrates on neutral and singly-ionized species transitions that are observable in astronomical spectra of cool stars, emphasizing the rare earth n(eutron)-capture elements and the Fe-group elements that are important inputs to early Galactic nucleosynthesis studies. The UW program is one of several productive efforts on atomic transition probabilities. These programs generally use time-resolved laser-induced-fluorescence (TR-LIF) to accurately measure total decay rates and data from high resolution Fourier transform spectrometers (FTSs) to determine emission branching fractions (BFs). The UW laboratory results almost always are directly linked to astronomical chemical composition efforts. There are good opportunities to extend similar research to other wavelength regions.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Footnotes

†IAU S350, Cambridge, UK, April 14 – 19, 2019

References

Abbott, et al. 2017, ApJL, 848, L12CrossRefGoogle Scholar
Arlandin, C., Käppeler, F., Wisshak, K., et al. 1999, ApJ, 525, 886CrossRefGoogle Scholar
Brault, J. W. 1976, J. Opt. Soc. Am., 66, 1081Google Scholar
Cowan, J. J., Sneden, C. Lawler, J. E., et al. 2019, Rev. Mod. Phys. submittedGoogle Scholar
Den Hartog, E. A., Wickliffe, M. E., Lawler, J. E. 2002, ApJS, 141, 255CrossRefGoogle Scholar
Ducan, R. C. & Thompson, C. 1992, ApJL, 392, L9CrossRefGoogle Scholar
Greiner, J. Mazzali, P. A., Kann, D. A. et al. 2015, Nature, 523, 189CrossRefGoogle Scholar
Kasen, D. & Bildsten, L. 2010, ApJ, 717, 245CrossRefGoogle Scholar
Kasen, D. Metzger, B., Barnes, J. Quatert, E. 2017, Nature, 551, 80CrossRefGoogle Scholar
Kaspi, V. M. & Beloborodov, A. M. 2017, ARA&A, 55, 261CrossRefGoogle Scholar
Kramer, M. 2008 Proc. IAU 4 Symp. S259, 485CrossRefGoogle Scholar
Lawler, J. E., Den Hartog, E. A., Sneden, C., Cowan, J. J. 2008, Can. J. Phys., 86, 1033CrossRefGoogle Scholar
Merrill, S. P. W. 1952, ApJ, 116, 21CrossRefGoogle Scholar
Mösta, P., Richers, S., Ott, C. D. et al. 2014, ApJL, 785, L29CrossRefGoogle Scholar
Nicholl, M. Guillochon, J. Berger, M. 2017, ApJ, 850, 55CrossRefGoogle Scholar
Pruet, J. Woosley, S. E., Hoffman, R. D. 2003, ApJ, 586, 1254CrossRefGoogle Scholar
Sakari, C. M., Placo, V. M., Farrell, E. M. et al. 2018, ApJ, 868, 110CrossRefGoogle Scholar
Simmerer, J. Sneden, C., Cowan, J. J. et al. 2004, ApJ, 617, 1091CrossRefGoogle Scholar
Sneden, C. 1973, ApJ, 184, 839CrossRefGoogle Scholar
Sneden, C., Lawler, J. E., Cowan, J. J., Ivans, I. I., Den Hartog, E. A., et al. 2009, ApJS, 182, 80CrossRefGoogle Scholar
Sneden, C., Cowan, J. J., Kobayashi, C., et al. 2016, ApJ, 817, 53CrossRefGoogle Scholar
Whaling, W. Carle, M. T., Pitt, M. L. 1993, JQRSRT, 50, 7CrossRefGoogle Scholar