Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T01:09:33.620Z Has data issue: false hasContentIssue false

Pulsar Timing Arrays

Published online by Cambridge University Press:  27 October 2016

Maura McLaughlin*
Affiliation:
West Virginia University email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I describe the concept of a pulsar timing array and give broad overview of the construction of a pulsar timing array, methods for high-precision timing and noise characterization, and algorithms for gravitational wave detection and source characterization. I then provide an overview of worldwide pulsar timing programs and the scale and sensitivity of the pulsar timing array efforts, with particular attention to the International Pulsar Timing Array (IPTA). I discuss the most recent results from pulsar timing arrays, emphasizing the gravitational wave detection efforts in particular. Finally, I describe the anticipated future growth in participants, telescopes, pulsars, and sensitivity of the IPTA, highlighting the transformational advances that it will enable over the next decade.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Arzoumanian, Z., et al.: The NANOGrav Collaboration 2015, ApJ, in press; arXiv:1505.07540Google Scholar
Arzoumanian, Z.: The NANOGrav Collaboration 2015, ApJ, in press; arXiv:1508.03024Google Scholar
Caprini, C., Durrer, R., & Siemens, X. 2010, Phys. Rev. D, D82, 063511 Google Scholar
Damour, T. & Vilenkin, A. 2005, Phys. Rev. D, 71, 063510 CrossRefGoogle Scholar
Detweiler, S. 1979, ApJ, 234, 1100 Google Scholar
Dolch, T., Lam, M. T., Cordes, J. M., et al. 2014, ApJ, 794, 21 CrossRefGoogle Scholar
Edwards, R. T., Hobbs, G. B., & Manchester, R. N. 2006, MNRAS, 372, 1549 Google Scholar
Foster, R. S. & Backer, D. C. 1990, ApJ, 361, 300 Google Scholar
Hellings, R. W. & Downs, G. S. 1983, ApJ, 265, L39 Google Scholar
Jenet, F. A., Hobbs, G. B., Lee, K. J., & Manchester, R. N., ApJ, 625, L123 Google Scholar
Kramer, M. & Champion, D. J. 2013, Classical Quant. Grav., 30, 224009 Google Scholar
Liu, K., Desvignes, G., Cognard, I., et al. 2014, MNRAS, 443, 3752 Google Scholar
Lorimer, D. R. & Kramer, M. 2005, Handbook of Pulsar Astronomy (Cambridge Univ. Press: Cambridge)Google Scholar
Manchester, R. N., Hobbs, G., Bailes, M., et al. 2013, PASP, 30, 17 Google Scholar
McLaughlin, M. A. 2013, Classical Quant. Grav., 30, 224008 Google Scholar
McWilliams, S. T., Ostriker, J. P., & Pretorius, F. 2014, ApJ, 789, 156 Google Scholar
Pennucci, T. T., Demorest, P. B., & Ransom, S. M. 2014, ApJ, 790, 93 CrossRefGoogle Scholar
Ravi, V., Wyithe, J. S. B., Shannon, R. M., Hobbs, G., & Manchester, R. N. 2014, MNRAS, 442, 56 Google Scholar
Sesana, A. 2013, MNRAS, 433, L1 Google Scholar
Siemens, X., Creighton, J., Maor, I., et al. 2006, Phys. Rev. D, 73, 105001 CrossRefGoogle Scholar
Shannon, R. M., Ravi, V., Lentati, L. T., et al. 2015, Science, 349, 1522 Google Scholar
Tong, M. L., Zhang, Y., Zhao, W., et al. 2014, Classical Quant. Grav., 31, 035001 Google Scholar
van Haasteren, R., Levin, Y., Janssen, G. H., et al. 2011, MNRAS, 414, 3117 Google Scholar