Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T15:30:43.555Z Has data issue: false hasContentIssue false

Pulsar Timing Arrays: Status and Techniques

Published online by Cambridge University Press:  20 March 2013

George Hobbs*
Affiliation:
CSIRO Astronomy and Space Science, Australia Telescope National Facility, PO Box 76, Epping NSW 1710, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three pulsar timing arrays are now producing high quality data sets. As reviewed in this paper, these data sets are been processed to 1) develop a pulsar-based time standard, 2) search for errors in the solar system planetary ephemeris and 3) detect gravitational waves. It is expected that the data sets will significantly improve in the near future by combining existing observations and by using new telescopes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Boyles, J., et al. 2012, arXiV, 1209, 4293Google Scholar
Champion, D., et al. 2010, ApJ, 720, 201Google Scholar
Cordes, J. M., et al. 2006, ApJ, 637, 446Google Scholar
Corde, J. M. & Jenet, F. A. 2012, ApJ, 752, 54CrossRefGoogle Scholar
Demorest, P., et al. 2012, arXiv, 1201, 6641Google Scholar
Detweiler, S. 1979, ApJ, 234, 1100Google Scholar
Edwards, R., Hobbs, G., & Manchester, R. 2006, MNRAS, 372, 1549Google Scholar
Ferdman, R. D., et al. 2010, CQGra, 27, 4014Google Scholar
Finn, L. S. & Lommen, A. N. 2010, ApJ, 718, 1400Google Scholar
Guinot, B. & Petit, G. 1991, A&A, 248, 292Google Scholar
Hellings, R. & Downs, G. 1983, ApJ, 256, 39Google Scholar
Hobbs, G., Edwards, R., & Manchester, R. 2006, MNRAS, 369, 655Google Scholar
Hobbs, G., et al. 2010a, CQGra, 27, 4013Google Scholar
Hobbs, G., Lyne, A., & Kramer, M. 2010b, MNRAS, 402, 1027Google Scholar
Hobbs, G., et al. 2012, accepted by MNRAS (arXiv.1208.3560)Google Scholar
Jenet, F., et al. 2006. ApJ, 653, 1571CrossRefGoogle Scholar
Jenet, F., et al. 2009. arXiv, 0909.1058Google Scholar
Kaspi, V., et al. 1994. ApJ, 428, 713Google Scholar
Keith, M. J., et al. 2010. MNRAS, 409, 619Google Scholar
Liu, K., et al. 2012, MNRAS, 420, 361Google Scholar
Lyne, A., et al. 2010, Sci, 329, 408Google Scholar
Manchester, R. N., et al. 2012, submitted to MNRASGoogle Scholar
Oslowski, S., et al. 2011. MNRAS, 418, 1258Google Scholar
Petit, G. & Tavella, P. 1996, A&A, 308, 290Google Scholar
Regimbau, T., Giampanis, S., Siemens, X & Mandic, V. 2012, PhRvD, 85, 6001Google Scholar
Rodin, A. 2008, MNRAS, 387, 1583Google Scholar
Rodin, A. & Chen, D. 2011, Astronomy Reports, 55, 622Google Scholar
Sanidas, S., Battye, R & Stappers, W. 2012, PhRvD, 85, 12003Google Scholar
Sesana, A., Vecchio, A., & Colacino, C. N. 2008, MNRAS, 390, 192CrossRefGoogle Scholar
Sazhin, M. V., 1978, Sov. Astron., 22, 36Google Scholar
van Haasteren, R., et al. 2011, MNRAS, 414, 3117Google Scholar
Verbiest, J. P. W., et al. 2009, MNRAS, 400, 951Google Scholar
Yardley, D., et al. 2010, MNRAS, 407, 669Google Scholar
You, X. P., et al. 2007, MNRAS, 378, 493Google Scholar
Zhao, W. 2011, PhRvD, 83, 4021Google Scholar