Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T11:38:42.892Z Has data issue: false hasContentIssue false

Prospects for studying Galactic neutron stars in binaries with LISA

Published online by Cambridge University Press:  27 February 2023

Valeriya Korol*
Affiliation:
Institute for Gravitational Wave Astronomy & School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

So far detached compact binaries containing neutron stars have been observed either at intermediate stages of the evolution by radio telescopes or at merger by ground-based gravitational wave detectors. Sensitive to gravitational waves from binaries millions to thousands years prior to the merger, the future Laser Interferometer Space Antenna (LISA) will be crucial for bridging the gap between the currently accessible regimes. Depending on the binary type, LISA could potentially discover from a few to several hundreds in the entirely new regime throughout the Milky Way. Here we provide a concise summary of the current expectation for the detection of Galactic binaries containing neutron stars with LISA, focusing on double neutron stars and neutron star - white dwarf binaries. We outline a few examples of science investigations that LISA data will enable for these binaries.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Andrews, J. J., Breivik, K., Pankow, C., D’Orazio, D. J., Safarzadeh, M. (2020), ApJL, 892CrossRefGoogle Scholar
Amaro-Seoane, P. (2017), arXiv, 1702.00786Google Scholar
Breivik, K., Coughlin, S., Zevin, M. (2020), ApJ, 898,CrossRefGoogle Scholar
Götberg, Y., Korol, V., Lamberts, A. (2020), ApJ, 904 Google Scholar
Habets, G. M. H. J. (1986), A&A, 165, 95109 Google Scholar
Farrow, N., Zhu, X.-J., & Thrane, E. (2019), ApJ, 876Google Scholar
Korol, V., Koop, O., & Rossi, E. M. (2018), ApJL, 866Google Scholar
Korol, V., Toonen, S., Klein, A. (2020), A&A, 638Google Scholar
Korol, V., & Safarzadeh, M. 2021, MNRAS, 502, 55765583 CrossRefGoogle Scholar
Lau, M. Y. M., Mandel, I., Vigna-Gómez, A. (2020), MNRAS, 492, 30613072 CrossRefGoogle Scholar
LIGO & Virgo Collaborations (2020), ApJL, 892,Google Scholar
Nelemans, G., Yungelson, L. R., & Portegies Zwart, S. F. (2001), A&A, 375, 890898 Google Scholar
Peters, P. C., & Mathews, J. (1963), Phys. Rev., 131, 435440 CrossRefGoogle Scholar
Seto, N. (2016), MNRAS, 460, L1L4 Google Scholar
Tauris, T. M., Langer, N., & Podsiadlowski, P. (2015), MNRAS, 451, 21232144 CrossRefGoogle Scholar
Tauris, T. M. (2018), Phys. Rev. Lett., 121CrossRefGoogle Scholar
Toonen, S., Perets, H. B., Igoshev, A. P., Michaely, E., & Zenati, Y. (2018), A&A, 619,Google Scholar
Vigna-Gómez, A., Neijssel, C. J., Stevenson, S., Barrett (2018), MNRAS, 481, 40094029 CrossRefGoogle Scholar
Wagg, T., Broekgaarden, F. S., de Mink, S. E., (2021), arXiv, 2111.13704Google Scholar