Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T14:41:18.831Z Has data issue: false hasContentIssue false

Properties of green valley galaxies in relation to their selection criteria

Published online by Cambridge University Press:  29 January 2021

Beatrice Nyiransengiyumva
Affiliation:
Mbarara University of Science and Technology (MUST), P.O. Box 1410, Uganda University of Rwanda, College of Education, P.O. Box 5039, Kigali, Rwanda
Mirjana Pović
Affiliation:
Ethiopian Space Science and Technology Institute (ESSTI), Entoto Observatory and Research Center (EORC), Astronomy and Astrophysics Research and Development Division, P.O. Box 33679, Addis Ababa, Ethiopia Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain
Pheneas Nkundabakura
Affiliation:
University of Rwanda, College of Education, P.O. Box 5039, Kigali, Rwanda
Antoine Mahoro
Affiliation:
South African Astronomical Observatory, P.O. BOX: 9 Observatory, Cape Town, South Africa Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The distribution of galaxies has been studied to show the difference between the blue cloud and red sequence and to define the green valley region. However, there are still many open questions regarding the importance of the green valley for understanding the morphological transformation and evolution of galaxies, how galaxies change from late-type to early-type and the role of AGN in galaxy formation and evolution scenario. The work focused on studying in more details the properties of green valley galaxies by testing the six most used selection criteria, differences between them, and how they may affect the main results and conclusions. The main findings are that, by selecting the green valley galaxies using different criteria, we are selecting different types of galaxies in terms of their stellar masses, sSFR, SFR, spectroscopic classification and morphological properties, where the difference was more significant for colour criteria than for sSFR and SFR vs. M* criteria.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Baldry, I. K., Glazebrook, K., Brinkmann, J., Ivezić, Ž., Lupton, R. H., Nichol, R. C., Szalay, A. S., et al. 2004, ApJ, 600, 68110.1086/380092CrossRefGoogle Scholar
Baldwin, J. A., Phillips, M. M., Terlevich, R., et al. 1981, PASP, 93, 5Google Scholar
Belfiore, F. et al. 2017, preprint, (arXiv:1710.05034)Google Scholar
Blanton, M. R. & Moustakas, J. 2009, ARA&A, 47, 15910.1146/annurev-astro-082708-101734CrossRefGoogle Scholar
Brammer, G. B. et al. 2009, ApJ, 706, L17310.1088/0004-637X/706/1/L173CrossRefGoogle Scholar
Bremer, M. N. et al. 2018, MNRAS, 476, 1210.1093/mnras/sty124CrossRefGoogle Scholar
Brinchmann, J., Charlot, S., White, S. D. M., Tremonti, C., Kauffmann, G., Heckman, T., Brinkmann, J., et al. 2004, MNRAS, 351, 115110.1111/j.1365-2966.2004.07881.xCrossRefGoogle Scholar
Bryukhareva, T. S. & Moiseev, A. V. 2019, MNRAS, 489, 3174Google Scholar
Chang, Y.-Y., van der Wel, A., da Cunha, E., Rix, H.-W., et al. 2015, ApJS, 219, 810.1088/0067-0049/219/1/8CrossRefGoogle Scholar
Coenda, V., Martìnez, H. J., Muriel, H., et al. 2018, PASP, 473, 5617Google Scholar
Eales, S. A. et al. 2018, MNRAS, 481, 118310.1093/mnras/sty2220CrossRefGoogle Scholar
Ge, X., Gu, Q.-S., Chen, Y.-Y., Ding, N., et al. 2019, Research in Astronomy and Astrophysics, 19, 02710.1088/1674-4527/19/2/27CrossRefGoogle Scholar
Kauffmann, G. et al 2003, MNRAS, 341, 3310.1046/j.1365-8711.2003.06291.xCrossRefGoogle Scholar
Kelvin, L. S. et al. 2018, MNRAS, 477, 411610.1093/mnras/sty933CrossRefGoogle Scholar
Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., Trevena, J., et al. 2001, ApJ, 556, 12110.1086/321545CrossRefGoogle Scholar
Lee, G.-H., Hwang, H. S., Lee, M. G., Ko, J., Sohn, J., Shim, H., Diaferio, A., et al. 2015, ApJ, 800, 8010.1088/0004-637X/800/2/80CrossRefGoogle Scholar
Lin, L. et al. 2017, ApJ, 851, 18Google Scholar
Lintott, C. et al. 2011, MNRAS, 410, 16610.1111/j.1365-2966.2010.17432.xCrossRefGoogle Scholar
Mahoro, A., Pović, M., Nkundabakura, P., et al. 2017, MNRAS, 471, 322610.1093/mnras/stx1762CrossRefGoogle Scholar
Mahoro, A., Pović, M., Nkundabakura, P., Nyiransengiyumva, B., Väisänen, P., et al. 2019, MNRAS, 485, 452Google Scholar
Martin, D. C. et al. 2005, ApJ, 619, L110.1086/426387CrossRefGoogle Scholar
Mendez, A. J., Coil, A. L., Lotz, J., Salim, S., Moustakas, J., Simard, L., et al. 2011, ApJ, 736, 11010.1088/0004-637X/736/2/110CrossRefGoogle Scholar
Noeske, K. G. et al. 2007, ApJ, 660, L4310.1086/517926CrossRefGoogle Scholar
Phillipps, S. et al. 2019, MNRAS, 485, 5559Google Scholar
Pović, M. et al. 2012, A&A, 541, A118Google Scholar
Salim, S. 2014, 1995, Serbian Astronomical Journal, 181, 1Google Scholar
Salim, S. et al. 2009, ApJ, 700, 16110.1088/0004-637X/700/1/161CrossRefGoogle Scholar
Schawinski, K., Thomas, D., Sarzi, M., Maraston, C., Kaviraj, S., Joo, S.-J., Yi, S. K., Silk, J., et al. 2007, MNRAS, 382, 141510.1111/j.1365-2966.2007.12487.xCrossRefGoogle Scholar
Schiminovich, D. et al. 2007, ApJS, 173, 31510.1086/524659CrossRefGoogle Scholar
Starkenburg, T. K., Tonnesen, S., Kopenhafer, C., et al. 2019, ApJ, 874, L1710.3847/2041-8213/ab0f34CrossRefGoogle Scholar
Taylor, M. 2017, arXiv:1707.02160Google Scholar
Trayford, J. W. et al. 2017, preprint (arXiv:1705.02331)Google Scholar
Trayford, J. W. et al. 2015, MNRAS, 452, 287910.1093/mnras/stv1461CrossRefGoogle Scholar
Tremonti, C. A. et al. 2004, ApJ, 613, 89810.1086/423264CrossRefGoogle Scholar
Walker, L. M. et al. 2013, ApJ, 775, 12910.1088/0004-637X/775/2/129CrossRefGoogle Scholar
Wyder, T. K. et al. 2007, ApJS, 173, 293Google Scholar
York, D. G. et al. 2000, AJ, 120, 157910.1086/301513CrossRefGoogle Scholar