Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T21:08:16.779Z Has data issue: false hasContentIssue false

Properties of galaxies at z ≈ 7 – 9 revealed by ALMA

Published online by Cambridge University Press:  04 June 2020

Takuya Hashimoto*
Affiliation:
Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan Department of Environmental Science and Technology, Faculty of Design Technology, Osaka Sangyo University, 3-1-1, Nagaito, Daito, Osaka574-8530, Japan National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo181-8588, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding properties of galaxies in the epoch of reionization (EoR) is a frontier in the modern astronomy. With the advent of ALMA, it has become possible to detect far-infrared fine structure lines (e.g. [CII] 158 μm and [OIII] 88 μm) and dust continuum emission in star-forming galaxies in the EoR. Among these lines, our team is focusing on [OIII] 88 μm observations in high-z galaxies. After the first detection of [OIII] in the epoch of reionization (EoR) in 2016 from our team at z = 7.21, there are now more than ten [OIII] detections at z > 6 up to z = 9.11. Interestingly, high-z galaxies typically have very high [OIII]-to-[CII] luminosity ratio ranging from 3 to 12 or higher, demonstrating [OIII] is a powerful tracer at high-z. The high luminosity ratios may imply that high-z galaxies have low gas-phase metallicity and/or high ionization states.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Brauher, J. R., Dale, D. A., & Helou, G. 2008, ApJS, 178, 28010.1086/590249CrossRefGoogle Scholar
Capak, P. L., Carilli, C., Jones, G., Casey, C. M., Riechers, D., Sheth, K., Carollo, C. M., Ilbert, O., et al. 2015, Nature, 522, 45510.1038/nature14500CrossRefGoogle Scholar
Carniani, S., Maiolino, R., Pallottini, A., Vallini, L., Pentericci, L., Ferrara, A., Castellano, M., Vanzella, E., et al. 2017, A&A, 605, A42Google Scholar
Carniani, S., Maiolino, R., Amorin, R., Pentericci, L., Pallottini, A., Ferrara, A., Willott, C. J., Smit, R., et al. 2018, MNRAS, 478, 117010.1093/mnras/sty1088CrossRefGoogle Scholar
Chevallard, J. & Charlot, S. 2016, MNRAS, 462, 141510.1093/mnras/stw1756CrossRefGoogle Scholar
Cormier, D., Madden, S. C., Lebouteiller, V., Abel, N., Hony, S., Galliano, F., Rémy-Ruyer, A., Bigiel, F., et al. 2015, A&A, 578, A53Google Scholar
da Cunha, E., Groves, B., Walter, F., Decarli, R., Weiss, A., Bertoldi, F., Carilli, C., Daddi, E., et al. 2013, ApJ, 766, 1310.1088/0004-637X/766/1/13CrossRefGoogle Scholar
Ellis, R. S., McLure, R. J., Dunlop, J. S., Robertson, B. E., Ono, Y., Schenker, M. A., Koekemoer, A., Bowler, R. A. A., et al. 2013, ApJL, 763, L710.1088/2041-8205/763/1/L7CrossRefGoogle Scholar
Ferland, G. J., Porter, R. L., van Hoof, P. A. M., Williams, R. J. R., Abel, N. P., Lykins, M. L., Shaw, G., Henney, W. J., et al. 2013, RMxAA, 49, 137Google Scholar
Harikane, Y., Ouchi, M., Shibuya, T., Kojima, T., Zhang, H., Itoh, R., Ono, Y., Higuchi, R., et al. 2018, ApJ, 859, 8410.3847/1538-4357/aabd80CrossRefGoogle Scholar
Hashimoto, T., Laporte, N., Mawatari, K., Ellis, R. S., Inoue, A. K., Zackrisson, E., Roberts-Borsani, G., Zheng, W., et al. 2018, Nature, 557, 39210.1038/s41586-018-0117-zCrossRefGoogle Scholar
Hashimoto, T., Inoue, A. K., Mawatari, K., Tamura, Y., Matsuo, H., Furusawa, H., Harikane, Y., Shibuya, T., et al. 2019, PASJ in press (arXiv:1806.00486)Google Scholar
Hildebrand, R. H. 1983, QJRAS, 24, 267Google Scholar
Inoue, A. K., Shimizu, I., Tamura, Y., Matsuo, H., Okamoto, T., & Yoshida, N. 2014, ApJL, 780, L1810.1088/2041-8205/780/2/L18CrossRefGoogle Scholar
Inoue, A. K., Tamura, Y., Matsuo, H., Mawatari, K., Shimizu, I., Shibuya, T., Ota, K., Yoshida, N., et al. 2016, Science, 352, 155910.1126/science.aaf0714CrossRefGoogle Scholar
Knudsen, K. K., Watson, D., Frayer, D., Christensen, L., Gallazzi, A., Michałowski, M. J., Richard, J., & Zavala, J. 2017, MNRAS, 466, 13810.1093/mnras/stw3066CrossRefGoogle Scholar
Katz, H., Kimm, T., Sijacki, D., & Haehnelt, M. G. 2017, MNRAS, 468, 483110.1093/mnras/stx608CrossRefGoogle Scholar
Lagache, G., Cousin, M., & Chatzikos, M. 2018, A&A, 609, A130Google Scholar
Laporte, N., Ellis, R. S., Boone, F., Bauer, F. E., Quénard, D., Roberts-Borsani, G. W., Pelló, R., Pérez-Fournon, I., et al. 2017, ApJL, 837, L2110.3847/2041-8213/aa62aaCrossRefGoogle Scholar
Laporte, N., Katz, H., Ellis, R. S., Lagache, G., Bauer, F. E., Boone, F., Inoue, A. K., Hashimoto, T., et al. 2019, ApJL, 487, L81Google Scholar
Marrone, D. P., Spilker, J. S., Hayward, C. C., Vieira, J. D., Aravena, M., Ashby, M. L. N., Bayliss, M. B., Béthermin, M., et al. 2018, Nature, 553, 5110.1038/nature24629CrossRefGoogle Scholar
Ota, K., Walter, F., Ohta, K., Hatsukade, B., Carilli, C. L., da Cunha, E., González-López, J., Decarli, R., et al. 2014, ApJ, 792, 3410.1088/0004-637X/792/1/34CrossRefGoogle Scholar
Stark, D. P., Ellis, R. S., Charlot, S., Chevallard, J., Tang, M., Belli, S., Zitrin, A., Mainali, R., et al. 2017, MNRAS, 464, 46910.1093/mnras/stw2233CrossRefGoogle Scholar
Tamura, Y., Mawatari, K., Hashimoto, T., Inoue, A. K., Zackrisson, E., Christensen, L., Binggeli, C., Matsuda, Y., et al. 2019, ApJ, 874, 2710.3847/1538-4357/ab0374CrossRefGoogle Scholar
Walter, F., Riechers, D., Novak, M., Decarli, R., Ferkinhoff, C., Venemans, B., Bañados, E., Bertoldi, F., et al. 2018, ApJ, 869L, 2210.3847/2041-8213/aaf4faCrossRefGoogle Scholar
Zheng, W., Postman, M., Zitrin, A., Moustakas, J., Shu, X., Jouvel, S., Host, O., Molino, A., et al. 2012, Nature, 489, 40610.1038/nature11446CrossRefGoogle Scholar