Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T00:16:36.476Z Has data issue: false hasContentIssue false

Properties and processes that influence CME geo-effectiveness

Published online by Cambridge University Press:  06 January 2014

Benoit Lavraud
Affiliation:
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse (UPS), Toulouse, France UMR 5277, Centre National de la Recherche Scientifique, Toulouse, France email: [email protected]
Alexis Rouillard
Affiliation:
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse (UPS), Toulouse, France UMR 5277, Centre National de la Recherche Scientifique, Toulouse, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The geo-effectiveness of coronal mass ejections (CME) is determined by a complex chain of processes. This paper highlights this fact by first discussing the importance of CMEs intrinsic properties set at the Sun (e.g., trajectory, eruption process, orientation, etc.). We then review other key processes that may occur during propagation (e.g., shocks, compressions, magnetic flux erosion) and in the specific interaction with Earth's magnetosphere (e.g., magnetic properties, preconditioning mechanisms). These processes sequentially have a significant influence on the final geo-effectiveness of CMEs. Their relative importance is discussed. While the CME's trajectory, magnetic field orientation, velocity and their duration as set at the Sun certainly are key ingredients to geo-effectiveness, other processes and properties, that at first appear secondary, often may be as important.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Akasofu, S.-I. 1981, Space Sci. Rev. 28 2, 121Google Scholar
Borovsky, J. E. & Denton, M. H. 2006, Geophys. Res. Lett., 33, L20101Google Scholar
Borovsky, J. E. 2008, J. Geophys. Res. 113 A8, A08228Google Scholar
Bothmer, V. & Schwenn, R. 1998, Ann. Geophys. 16 1Google Scholar
Burlaga, L. F.et al. 1982, Geophys. Res. Lett., 9, 1317Google Scholar
Burton, R. K., McPherron, R. L., & Russell, C. T. 1975, J. Geophys. Res. 80 4204CrossRefGoogle Scholar
Cane, H. V., & Richardson, I. G., St.Cyr, O. C. 2000, Geophys. Res. Lett., 27, 3591Google Scholar
Cargill, P. J., Chen, J., Spicer, D. S., & Zalesak, S. T. 1995, Geophys. Res. Lett., 22, 647Google Scholar
Chen, J. 1996, J. Geophys. Res. 101 27 499Google Scholar
Dasso, S., Nakwacki, M. S., Demoulin, P., & Mandrini, C. H. 2007, Sol. Phys. 244 115Google Scholar
Delannée, C. & Aulanier, G. 1999, Sol. Phys., 190, 107CrossRefGoogle Scholar
Démoulin, P. & Dasso, S. 2009, A&A 498 551Google Scholar
Dungey, J. W. 1961, Phys. Rev. Lett., 6, 47CrossRefGoogle Scholar
Erkaev, N. V., et al. 2012, Geophys. Res. Lett., 39, L01103Google Scholar
Fenrich, F. R. & Luhmann, J. G. 1998, Geophys. Res. Lett., 25, 2999Google Scholar
Fujimoto, M. & Teresawa, T. 1995, J. Geophys. Res., 100, 12025Google Scholar
Gonzalez, W. D. & Mozer, F. S. 1974, J. Geophys. Res. 79 4186Google Scholar
Gopalswamy, N., Lara, A., Lepping, R. P., Kaiser, M. L., & Berdichevsky, D., St.Cyr, O. C. 2000, Geophys. Res. Lett., 27, 145Google Scholar
Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M. L., & Howard, R. A. 2001, J. Geophys. Res. 106 29 207Google Scholar
Gosling, J. T., Bame, S. J., McComas, D. J., & Phillips, J. L. 1990, Geophys. Res. Lett., 17, 901Google Scholar
Gosling, J. T. 1993, J. Geophys. Res. 98 A11, 18937Google Scholar
Jian, L., Russell, C. T., Luhmann, J. G., & Skoug, R. M. 2006, Sol. Phys., 239, 393Google Scholar
Lavraud, B. & Jordanova, V. 2007, Geophys. Res. Lett., 34, L02102Google Scholar
Lavraud, B. & Borovsky, J. E. 2008, J. Geophys. Res., 113, A00B08Google Scholar
Lavraud, B., Ruffenach, A., Kajdic, P., Manchester, W. B., & Lugaz, N. 2013, J. Geophys. Res., submittedGoogle Scholar
Lopez, R. E., Bruntz, R., Mitchell, E. J., Wiltberger, M., Lyon, J. G., & Merkin, V. G. 2010, J. Geophys. Res. 115 A12, A12216Google Scholar
Lugaz, N., Manchester, W. B., & Gombosi, T. I. IV, 2005, ApJ, 634, 651Google Scholar
McComas, D., et al. 1988, ApJ, 93, 2519Google Scholar
Mulligan, T. & Russell, C. T., Luhmann, J. G. 1988, Geophys. Res. Lett., 25, 2959Google Scholar
Newell, P. T., Sotirelis, T., Liou, K., Meng, C.-I., & Rich, F. J. 2007, J. Geophys. Res., 112, A01206Google Scholar
OBrien, T. P. & McPherron, R. L. 2000, J. Geophys. Res., 105, 7707Google Scholar
Owens, M. J. 2006, J. Geophys. Res., 111, A12109Google Scholar
Owens, M. J., Merkin, V. G., & Riley, P. 2006, J. Geophys. Res., 111, A03104Google Scholar
Perreault, P. & Akasofu, S.-I. 1978, Geophys. J. R. Astr. Soc., 54, 547Google Scholar
Rouillard, A. P., et al. 2011, ApJ 734 7Google Scholar
Rouillard, A. P., et al. 2010, ApJ, 719, 1385Google Scholar
Rouillard, A. P., et al. 2009, Sol. Phys., 256, 307Google Scholar
Ruffenach, A., et al. 2012, J. Geophys. Res. 117 A9, A09101Google Scholar
Russell, C. T., et al. 2013, ApJ 770 38Google Scholar
Shepherd, S. G. 2007, J. Atmos. Solar-Terr. Phys., 69, 234Google Scholar
Siscoe, G. & Crooker, N. 1974, Geophys. Res. Lett., 1, 17Google Scholar
Siscoe, G. 2011, J. Atmos. Solar-Terr. Phys., 73, 402Google Scholar
Subramanian, P., Lara, A., & Borgazzi, A. 2012, Geophys. Res. Lett., 39, L19107Google Scholar
Swisdak, M. & Drake, J. F. 2012, Geophys. Res. Lett., 34, L11106Google Scholar
Tenfjord, P. & Østgaard, N. 2013, J. Geophys., Res., in pressGoogle Scholar
Vrsnak, B.et al. 2010, A&A, 512, A43Google Scholar
Wang, Y.-M.et al. 2000, J. Geophys. Res., 105, 25133Google Scholar
Zhang, J., Dere, K. P., Howard, R. A., & Bothmer, V. 2003, ApJ, 582, 520Google Scholar
Zuccarello, F. P., Bemporad, A., Jacobs, C., Mierla, M., Poedts, S., & Zuccarello, F. 2012, ApJ, 744, 14Google Scholar