Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T22:41:45.148Z Has data issue: false hasContentIssue false

Proper-motion studies of Milky Way starburst clusters – a new definition of starburst cluster templates

Published online by Cambridge University Press:  18 January 2010

Andrea Stolte
Affiliation:
I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, 50937 Köln, Germany email: [email protected]
Wolfgang Brandner
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Starburst clusters in the Milky Way have the advantage that individual stars down to subsolar masses can be resolved. Thus far, field contamination along the line of sight towards the Galactic Centre and spiral arms was the limiting factor in deriving an unbiased census of the stellar population in Milky Way starbursts and, hence, the spatial extent and initial mass function in starburst clusters. As the next generation of telescopes with higher sensitivity and spatial resolution are being developed, these resolved clusters become increasingly important as templates for young, massive extragalactic systems, which will be resolved at the high-mass end of the stellar mass function. With the aim to obtain a uniform characterisation of starburst cluster properties in the Milky Way, we have initiated a proper-motion membership survey. This technique became feasible for clusters out to distances of 8 kpc with diffraction-limited imaging using adaptive optics from the ground and with Hubble Space Telescope from space.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Baumgardt, H., & Kroupa, P. 2007, MNRAS, 380, 1589CrossRefGoogle Scholar
Brandner, W., Clark, J. S., Stolte, A., Waters, R., Negueruela, I., & Goodwin, S. P. 2008, A&A, 478, 137Google Scholar
Clark, J. S., Negueruela, I., Crowther, P. A., & Goodwin, S. P. 2005, A&A, 434, 949Google Scholar
Espinoza, P., Selman, F., & Melnick, J. 2008, A&A, 501, 563Google Scholar
Figer, D. F., Kim, S. S., Morris, M., Serabyn, E., Rich, R. M., & McLean, I. S. 1999, ApJ, 525, 750CrossRefGoogle Scholar
Gürkan, M. A., Freitag, M., & Rasio, F. A. 2004, ApJ, 604, 632Google Scholar
Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E., Scholz, R.-D., & Zinnecker, H. 2009, A&A, 504, 681Google Scholar
Kim, S. S., Figer, D. F., Kudritzki, R. P., & Najarro, F. 2006, ApJ (Letters), 653, 113CrossRefGoogle Scholar
Harayama, Y., Eisenhauer, F., & Martins, F. 2008, ApJ, 675, 1319CrossRefGoogle Scholar
Lee, M. G., Chandar, R., & Whitmore, B. C. 2005, AJ, 310, 2128CrossRefGoogle Scholar
Pfalzner, S. 2009, A&A, 498, L37Google Scholar
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J., & McMillan, S. L. W. 2004, Nature, 428, 724CrossRefGoogle Scholar
Stolte, A., Brandner, W., Grebel, E. K., Lenzen, R., & Lagrange, A.-M. 2005, ApJ (Letters), 628, L113Google Scholar
Stolte, A., Brandner, W., Brandl, B., & Zinnecker, H. 2006, AJ, 132, 253CrossRefGoogle Scholar
Stolte, A., Ghez, A. M., Morris, M., Lu, J. R., Brandner, W., & Matthews, K. 2008, ApJ, 675, 1278CrossRefGoogle Scholar
Whitmore, B. C. & Schweizer, F. 1995, AJ, 109, 960Google Scholar