Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T07:29:28.461Z Has data issue: false hasContentIssue false

Prominence Science with ATST Instrumentation

Published online by Cambridge University Press:  06 January 2014

Thomas Rimmele
Affiliation:
National Solar Observatory, Sunspot, NM-88349, PO Box 62, USA email: [email protected]
Thomas Berger
Affiliation:
National Solar Observatory, Sunspot, NM-88349, PO Box 62, USA email: [email protected]
Roberto Casini
Affiliation:
High Altitude Observatory, Boulder, CO
David Elmore
Affiliation:
National Solar Observatory, Sunspot, NM-88349, PO Box 62, USA email: [email protected]
Jeff Kuhn
Affiliation:
Institute for Astronomy, University of Hawaii
Haosheng Lin
Affiliation:
Institute for Astronomy, University of Hawaii
Wolfgang Schmidt
Affiliation:
Kiepenheuer Institute für Sonnenphysik, Freiburg, Germany
Friedrich Wöger
Affiliation:
National Solar Observatory, Sunspot, NM-88349, PO Box 62, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The 4m Advance Technology Solar Telescope (ATST) is under construction on Maui, HI. With its unprecedented resolution and photon collecting power ATST will be an ideal tool for studying prominences and filaments and their role in producing Coronal Mass Ejections that drive Space Weather. The ATST facility will provide a set of first light instruments that enable imaging and spectroscopy of the dynamic filament and prominence structure at 8 times the resolution of Hinode. Polarimeters allow high precision chromospheric and coronal magnetometry at visible and infrared (IR) wavelengths. This paper summarizes the capabilities of the ATST first-light instrumentation with focus on prominence and filament science.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Wiegelmann, T. 2004, Sol. Phys., 219, 87Google Scholar
Uitenbroek, H. & Tritschler, A. 2012, IAU Special Session, 6Google Scholar
Taylor, G.et al., 2013, Proceddings SPIE, Optics and Photonics 2013: Astronomical Optics and Instruments, in press.Google Scholar
Stellmacher, G. & Wiehr, E. 2005, Astron. Astrophys., 431, 1069Google Scholar
Stellmacher, G., Wiehr, E., & Dammasch, I. E. 2013, arXiv:1303.1126Google Scholar
Asensio Ramos, A., Trujillo Bueno, J., & Landi Degl'Innocenti, E. 2008, ApJ, 683, 542Google Scholar
Belopolsky, A. A. 1908, MiPul (Bull. Pulkovo Obs.), 2, 239Google Scholar
Berger, T. E., Slater, G., Hurlburt, N., et al. 2010, ApJ, 716, 1288Google Scholar
Bommier, V. 1980, Astron. Astrophys., 87, 109Google Scholar
Bommier, V., Landi Degl'Innocenti, E., Leroy, J.-L. & Sahal-Bréchot, S. 1994, Solar Phys., 154, 231Google Scholar
Casini, R., López Ariste, A., Tomczyk, S., & Lites, B. W. 2003, ApJ, 582, 51LGoogle Scholar
Gouttebroze, P. & Heinzel, P. 2002, Astron. Astrophys., 385, 273Google Scholar
Gouttebroze, P., Vial, J.-C., & Heinzel, P. 1997, Solar Phys., 172, 125CrossRefGoogle Scholar
Kuckein, C., Centeno, R., Martínez Pillet, V., et al. 2009, Astron. Astrophys., 501, 1113Google Scholar
Landi Degl'Innocenti, E. 1982, Solar Phys., 79, 291Google Scholar
Leroy, J.-L. 1981, Solar Phys., 71, 285CrossRefGoogle Scholar
López Ariste, A., & Casini, R. 2002, ApJ, 575, 529Google Scholar
Paletou, F., López Ariste, A., Bommier, V., & Semel, M. 2001, Astron. Astrophys., 375, 39Google Scholar
Querfeld, C. W., Smartt, R. N., Bommier, V., et al. 1985, Solar Phys., 96, 277Google Scholar
Trujillo Bueno, J., Landi Degl'Innocenti, E., Collados, M., et al. 2002, Nature, 415, 403Google Scholar