Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T04:34:28.629Z Has data issue: false hasContentIssue false

Probing the accelerating Universe with redshift-space distortions in VIPERS

Published online by Cambridge University Press:  12 October 2016

Sylvain de la Torre*
Affiliation:
Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, 13388, Marseille, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the first measurement of the growth rate of structure at z=0.8. It has been obtained from the redshift-space distortions observed in the galaxy clustering pattern in the VIMOS Public Redshift survey (VIPERS) first data release. VIPERS is a large galaxy redshift survey probing the large-scale structure at 0.5 < z < 1.2 with an unprecedented accuracy. This measurement represents a new reference in the distant Universe, which has been poorly explored until now. We obtain σ8 = 0.47 ± 0.08 at z = 0.8 that is consistent with the predictions of standard cosmological models based on Einstein gravity. This measurement alone is however not accurate enough to allow the detection of possible deviations from standard gravity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Blake, C., Brough, S., Colless, M., et al. 2012, MNRAS, 425, 405 Google Scholar
Beutler, F., Blake, C., Colless, M., et al. 2012, MNRAS, 423, 3430 CrossRefGoogle Scholar
Cabré, A. & Gaztañaga, E. 2009, MNRAS, 393, 1183 Google Scholar
Contreras, C., Blake, C., Poole, G. B., et al. 2013, MNRAS, 430, 924 Google Scholar
de la Torre, S. & Guzzo, L. 2012, MNRAS, 427, 327 Google Scholar
de la Torre, S., Guzzo, L., Peacock, J. A., et al. 2013, A&A, 557, A54 Google Scholar
di Porto, C., Amendola, L., & Branchini, E. 2012, MNRAS, 419, 985 CrossRefGoogle Scholar
Dvali, G., Gabadadze, G., & Porrati, M. 2000, Physics Letters B, 485, 208 Google Scholar
Garilli, B., Guzzo, L., Scodeggio, M., et al. 2014, A&A, 562, A23 Google Scholar
Guzzo, L., Pierleoni, M., Meneux, B., et al. 2008, Nature, 451, 541 Google Scholar
Guzzo, L., Scodeggio, M., Garilli, B., et al. 2014, A&A, 566, A108 Google Scholar
Hawkins, E., Maddox, S., Cole, S., et al. 2003, MNRAS, 346, 78 CrossRefGoogle Scholar
Hinshaw, G., Larson, D., Komatsu, E., et al. 2013, ApJS, 208, 19 Google Scholar
Peacock, J. A., Schneider, P., Efstathiou, G., et al. 2006, ESA-ESO Working Group on Fundamental Cosmology, Edited by Peacock, J. A. et al. ESAGoogle Scholar
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565 Google Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2013, arXiv:1303.5076Google Scholar
Reid, B. A., Samushia, L., White, M., et al. 2012, MNRAS, 426, 2719 Google Scholar
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009 Google Scholar
Ross, N. P., da Ângela, J., Shanks, T., et al. 2007, MNRAS, 381, 573 Google Scholar
Samushia, L., Percival, W. J., & Raccanelli, A. 2012, MNRAS, 420, 2102 Google Scholar
Scoccimarro, R. 2004, PRD, 70, 083007 Google Scholar