Published online by Cambridge University Press: 30 December 2019
S-type stars are late-type giants enhanced with s-process elements originating either from nucleosynthesis during the Asymptotic Giant Branch (AGB) or from a pollution by a binary companion. The former are called intrinsic S stars, and the latter extrinsic S stars. The intrinsic S stars are on the AGB and have undergone third dredge-up events. The atmospheric parameters of S stars are more numerous than those of M-type giants (C/O ratio and s-process abundances affect the thermal structure and spectral synthesis), and hence they are more difficult to derive. These atmospheric parameters are also entangled within each other. Nevertheless, high-resolution spectroscopic data of S stars combined with the Gaia Data Release 2 (GDR2) parallaxes and with the MARCS model atmospheres for S-type stars were used to derive effective temperatures, surface gravities, and luminosities. These parameters not only allow to locate the intrinsic and extrinsic S stars in the Hertzsprung-Russell (HR) diagram but also allow the accurate abundance analysis of the s-process elements.
This work has made use of data from the European Space Agency (ESA) mission Gaia (http://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, http://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.