Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T05:33:30.380Z Has data issue: false hasContentIssue false

Probing protoplanetary disks with Aperture Masking

Published online by Cambridge University Press:  06 January 2014

S. Lacour
Affiliation:
LESIA, CNRS/UMR-8109, Observatoire de Paris, UPMC, Université Paris Diderot, 5 place Jules Janssen, F-92195, Meudon, France
P. Tuthill
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia
S. Casassus
Affiliation:
Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The interaction between planetary formation and protostellar disks is among the most critical remaining pieces in the puzzle of solar system assembly. Leading theoretical models are constructed around two distinct scenarios: gravitational instabilities and core accretion. The physics of each applies to quite different epochs of formation, and exhibits complex dependencies on parameters like disk density and viscosity. Untangling the effects such processes have on the final planetary statistics necessitates direct observation of exoplanets in their primordial state, prior to orbital migration. Furthermore, detailed study of the environment, such as the way the planets shape the protostellar disk by driving accretion streams across disk gaps, will also constrain formation models. Aperture masking interferometry has demonstrated a unique ability to probe the gaps within stellar disks. It has twin advantages of a higher dynamic range at the diffraction limit (λ/D) than differential imaging, while at the same time giving very extensive UV coverage compared to long baseline interferometry.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Andrews, S. M., Wilner, D. J., Espaillat, C., et al. 2011, ApJ, 732, 42CrossRefGoogle Scholar
Biller, B., Lacour, S., Juhász, A., et al. 2012, ApJ, 753, L38CrossRefGoogle Scholar
Bryden, G., Chen, X., Lin, D. N. C., Nelson, R. P., & Papaloizou, J. C. B. 1999, ApJ, 514, 344CrossRefGoogle Scholar
Calvet, N., D'Alessio, P., Hartmann, L., et al. 2002, ApJ, 568, 1008Google Scholar
Clarke, C. J., Gendrin, A., & Sotomayor, M. 2001, MNRAS, 328, 485CrossRefGoogle Scholar
Dullemond, C. P. & Dominik, C. 2005, A&A, 434, 971Google Scholar
Huélamo, N., Lacour, S., Tuthill, P., et al. 2011, A&A, 528, L7Google Scholar
Ireland, M. J. & Kraus, A. L. 2008, ApJ, 678, L59Google Scholar
Kraus, A. L. & Ireland, M. J. 2012, ApJ, 745, 5Google Scholar
Lubow, S. H., Seibert, M., & Artymowicz, P. 1999, ApJ, 526, 1001CrossRefGoogle Scholar
Olofsson, J., Benisty, M., Augereau, J.-C., et al. 2011, A&A, 528, L6Google Scholar
Olofsson, J., Benisty, M., Le Bouquin, J.-B., et al. 2013, A&A, 552, A4Google Scholar
Papaloizou, J. C. B. 2007, A&A, 463, 775Google Scholar