Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T12:15:28.226Z Has data issue: false hasContentIssue false

Probing General Relativity with Accreting Black Holes

Published online by Cambridge University Press:  21 February 2013

A. C. Fabian*
Affiliation:
Institute of Astronomy, Madingley Road. Cambridge CB3 0HAUK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most of the X-ray emission from luminous accreting black holes emerges from within 20 gravitational radii. The effective emission radius is several times smaller if the black hole is rapidly spinning. General Relativistic effects can then be very important. Large spacetime curvature causes strong lightbending and large gravitational redshifts. The hard X-ray, power-law-emitting corona irradiates the accretion disc generating an X-ray reflection component. Atomic features in the reflection spectrum allow gravitational redshifts to be measured. Time delays between observed variations in the power-law and the reflection spectrum (reverberation) enable the physical scale of the reflecting region to be determined. The relative strength of the reflection and power-law continuum depends on light bending. All of these observed effects enable the immediate environment of the black hole where the effects of General Relativity are on display to be probed and explored.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Brenneman, L. W. & Reynolds, C. S. 2009, ApJ, 702, 1367CrossRefGoogle Scholar
Brenneman, L. W., et al. 2011, ApJ, 736, 103Google Scholar
Cackett, E. M., et al. 2008, ApJ, 674, 415CrossRefGoogle Scholar
Chen, B., Dai, X., Kochanek, S., Chartas, G., Blackburne, J. A., & Kozlowski, S. 2011, ApJ, 740, L34Google Scholar
De Marco, B., et al. 2012, MNRAS, arXiv:1201.0196Google Scholar
Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, MNRAS, 238, 729Google Scholar
Fabian, A. C. & Vaughan, S. 2003, MNRAS, 340, L28Google Scholar
Fabian, A. C., et al. 2009, Nature, 459, 540Google Scholar
Fabian, A. C. & Ross, R. R. 2010, SScRv, 157, 167Google Scholar
Fabian, A. C., et al. 2012, MNRAS, 419, 116CrossRefGoogle Scholar
Gallo, L., et al. 2012, arXiv:1210.0855Google Scholar
Johanssen, T. & Psaltis, D. 2012, arXiv:1202.6069Google Scholar
Kara, E., Fabian, A. C., Cackett, E. M., Steiner, J., Uttley, P., Wilkins, D. R., & Zoghbi, A. 2012a, MNRAS in press, arXiv:1210.1465Google Scholar
Kara, E., Fabian, A. C., Cackett, E. M., Miniutti, G., & Uttley, P. 2012b, MNRAS submittedGoogle Scholar
Laor, A., et al. 2005, ApJ, 620, 744Google Scholar
Lynden-Bell, D. 1969, Nature, 223, 690CrossRefGoogle Scholar
Martocchia, A. & Matt, G. 1996, MNRAS, 282, L53CrossRefGoogle Scholar
Martocchia, A., Matt, G., & Karas, V., 2002, A&A, 383, L23Google Scholar
Miller, J. M. 2007, ARAA, 45, 441Google Scholar
Miller, L., Turner, T. J., & Reeves, J. N. 2008, A&A, 483, 437Google Scholar
Miniutti, G. & Fabian, A. C. 2004, MNRAS, 349, 1435CrossRefGoogle Scholar
Miniutti, G, et al. 2007, PASJ, 59, 315CrossRefGoogle Scholar
Miniutti, G., Brandt, W. N., Schneider, D. P., Fabian, A. C., Gallo, L. C., & Boller, T. 2012, MNRAS, 425, 1718CrossRefGoogle Scholar
Morgan, C. W., et al. 2012, ApJ, 756, 52Google Scholar
Nandra, K, O'Neill, P. M., George, I. M., & Reeves, J. N. 2007, MNRAS, 382, 194Google Scholar
Reis, R. C., et al. 2011, MNRAS, 410, 2497Google Scholar
Reis, R. C., Miller, J. M., Reynolds, M. T., Fabian, A. C., Walton, D. J., Cackett, E., & Steiner, J. F. 2012, arXiv:1208.3277Google Scholar
Ross, R. R. & Fabian, A. C. 2005, MNRAS, 358, 211Google Scholar
Rossi, S., Homan, J., Miller, J. M., & Belloni, T. 2005, MNRAS, 360, 763CrossRefGoogle Scholar
Schartel, N., Rodríguez-Pascual, P. M., Santos-Lleó, M., Ballo, L., Clavel, J., Guainazzi, M., Jiménez-Bailón, E., & Piconcelli, E. 2007, A&A, 474, 431Google Scholar
Tanaka, Y., et al. 1995, Nature, 375, 659Google Scholar
Tananbaum, H., Gursky, H., Kellogg, E., Giacconi, R., & Jones, C. 1972, ApJ, 177, L5CrossRefGoogle Scholar
Uttley, P., Wilkinson, T., Cassatella, P., Wilms, J., Pottschmidt, K., Hanke, M., & Böck, M. 2011, MNRAS, 414, L60CrossRefGoogle Scholar
Wilkins, D. R. & Fabian, A. C. 2011, MNRAS, 414, 1269Google Scholar
Wilkins, D. R. & Fabian, A. C. 2012a, MNRAS, 424, 1284Google Scholar
Wilkins, D. R. & Fabian, A. C. 2012b, MNRAS, submittedGoogle Scholar
Zoghbi, A., Fabian, A. C., Reynolds, C. S. & Cackett, E. M., 2012, MNRAS, 422, 129Google Scholar