Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T09:48:04.376Z Has data issue: false hasContentIssue false

Probing Galactic Outskirts with Dragonfly

Published online by Cambridge University Press:  21 March 2017

Roberto Abraham
Affiliation:
Department of Astronomy and Astrophysics, University of Toronto Dunlap Institute for Astronomy and Astrophysics, University of Toronto
Allison Merritt
Affiliation:
Department of Astronomy, Yale University
Jielai Zhang
Affiliation:
Department of Astronomy and Astrophysics, University of Toronto Dunlap Institute for Astronomy and Astrophysics, University of Toronto Canadian Institute for Theoretical Astrophysics
Pieter van Dokkum
Affiliation:
Department of Astronomy, Yale University
Charlie Conroy
Affiliation:
Harvard-Smithsonian Center for Astrophysics
Shany Danieli
Affiliation:
Department of Astronomy, Yale University Harvard-Smithsonian Center for Astrophysics Department of Physics, Yale University Yale Center for Astronomy and Astrophysics
Lamiya Mowla
Affiliation:
Department of Astronomy, Yale University
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe the challenges inherent to low surface brightness imaging and present some early results from the Dragonfly Nearby Galaxies survey. Wide field, ultra-low surface brightness imaging (μg > 31 mag arcsec−2) of the first eight galaxies in the survey reveals a rich variety in the distribution of stars in the outskirts of luminous nearby galaxies. The mean stellar halo mass fraction is 0.009 ± 0.005 with a peak-to-peak scatter of a factor of > 100. Some galaxies in the sample feature strongly structured halos resembling that of M31, but three of the eight galaxies have halos that are completely undetected in our data. We conclude that spiral galaxies as a class exhibit a rich variety in stellar halo properties, implying that their assembly histories have been highly non-uniform. While the outskirts of some galaxies are dominated by halos with the rich substructures predicted by numerical simulations, in other cases the outermost parts of galaxies are simply the extrapolated smooth starlight from enormous stellar disks that closely trace neutral gas morphology out to around 20 scale lengths.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abadi, M. G., Navarro, J. F., & Steinmetz, M. 2006, MNRAS, 365, 747 CrossRefGoogle Scholar
Abraham, R. G. & van Dokkum, P. G. 2014, PASP, 126, 55 Google Scholar
Amorisco, N. C. 2015, ArXiv e-printsGoogle Scholar
Bailin, J., Bell, E. F., Chappell, S. N., Radburn-Smith, D. J., & de Jong, R. S. 2011, ApJ, 736, 24 CrossRefGoogle Scholar
Bernstein, R. A. 2007, ApJ, 666, 663 CrossRefGoogle Scholar
Bakos, J. & Trujillo, I. 2012, ArXiv e-printsGoogle Scholar
Barker, M. K., Ferguson, A. M. N., Irwin, M. J., Arimoto, N., & Jablonka, P. 2012, MNRAS, 419, 1489 Google Scholar
Bell, E. F., Zucker, D. B., Belokurov, V., et al. 2008, ApJ, 680, 295 Google Scholar
Belokurov, V., Evans, N. W., Irwin, M. J., et al. 2007, ApJ, 658, 337 Google Scholar
Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2006, ApJ, 642, L137 CrossRefGoogle Scholar
Carlberg, R. G., Richer, H. B., McConnachie, A. W., et al. 2011, ApJ, 731, 124 Google Scholar
Carollo, D., Beers, T. C., Lee, Y. S., et al. 2007, Nature, 450, 1020 Google Scholar
Carollo, D., Beers, T. C., Chiba, M., et al. 2010, ApJ, 712, 692 Google Scholar
Cooper, A. P., Cole, S., Frenk, C. S., et al. 2010, MNRAS, 406, 744 CrossRefGoogle Scholar
Cooper, A. P., D'Souza, R., Kauffmann, G., et al. 2013, MNRAS, 434, 3348 Google Scholar
Courteau, S., Widrow, L. M., McDonald, M., et al. 2011, ApJ, 739, 20 CrossRefGoogle Scholar
Dalcanton, J. J. & Bernstein, R. A. 2002, AJ, 124, 1328 Google Scholar
de Jong, R. S. 2008, MNRAS, 388, 1521 Google Scholar
De Lucia, G. & Helmi, A. 2008, MNRAS, 391, 14 Google Scholar
de Vore, J. G., Kristl, J. A., & Rappaport, S. A. 2013, Journal of Geophysical Research - Atmospheres 118 11, 5679Google Scholar
Elmegreen, B. G. & Hunter, D. A. 2006, ApJ, 636, 712 Google Scholar
Ferguson, A. M. N., Irwin, M. J., Ibata, R. A., Lewis, G. F., & Tanvir, N. R. 2002, AJ, 124, 1452 Google Scholar
Font, A. S., McCarthy, I. G., Crain, R. A., et al. 2011, MNRAS, 416, 2802 Google Scholar
Gilbert, K. M., Guhathakurta, P., Beaton, R. L., et al. 2012, ApJ, 760, 76 CrossRefGoogle Scholar
Greggio, L., Rejkuba, M., Gonzalez, O. A., et al. 2014, A&A, 562, A73 Google Scholar
Ibata, R., Irwin, M., Lewis, G., Ferguson, A. M. N., & Tanvir, N. 2001, Nature, 412, 49 CrossRefGoogle Scholar
Ibata, R., Martin, N. F., Irwin, M., et al. 2007, ApJ, 671, 1591 Google Scholar
Irwin, M. J., Ferguson, A. M. N., Ibata, R. A., Lewis, G. F., & Tanvir, N. R. 2005, ApJ, 628, L105 Google Scholar
Johnston, K. V., Bullock, J. S., Sharma, S., et al. 2008, ApJ, 689, 936 Google Scholar
King, I. R. 1971, PASP, 83, 199 Google Scholar
Kormendy, J. & Bahcall, J. N. 1974, AJ, 79, 671 Google Scholar
Majewski, S. R., Skrutskie, M. F., Weinberg, M. D., & Ostheimer, J. C. 2003, ApJ, 599, 1082 Google Scholar
Martínez-Delgado, D., Gabany, R. J., Crawford, K., et al. 2010, AJ, 140, 962 CrossRefGoogle Scholar
McConnachie, A. W., Chapman, S. C., Ibata, R. A., et al. 2006, ApJ, 647, L25 Google Scholar
McConnachie, A. W., Irwin, M. J., Ibata, R. A., et al. 2009, Nature, 461, 66 Google Scholar
Merritt, A., van Dokkum, P. G., & Abraham, R. 2014, ApJLett, 787, L37 CrossRefGoogle Scholar
Merritt, A., van Dokkum, P. G., Abraham, R., & Zhang, J. 2016, arXiv:1606.08847Google Scholar
Mihos, J. C., Harding, P., Spengler, C. E., Rudick, C. S., & Feldmeier, J. J. 2013, ApJ, 762, 82 Google Scholar
Monachesi, A., Bell, E. F., Radburn-Smith, D., et al. 2015, ArXiv e-printsGoogle Scholar
Monachesi, A., Bell, E. F., Radburn-Smith, D. J., et al. 2013, ApJ, 766, 106 Google Scholar
Mouhcine, M., Rejkuba, M., & Ibata, R. 2007, MNRAS, 381, 873 Google Scholar
Pillepich, A., Madau, P., & Mayer, L. 2015, ApJ, 799, 184 Google Scholar
Pillepich, A., Vogelsberger, M., Deason, A., et al. 2014, MNRAS, 444, 237 CrossRefGoogle Scholar
Pohlen, M. & Trujillo, I. 2006, A&A, 454, 759 Google Scholar
Purcell, C. W., Bullock, J. S., & Zentner, A. R. 2007, ApJ, 666, 20 Google Scholar
Racine, R. 1996, PASP, 108, 699 Google Scholar
Radburn-Smith, D. J., de Jong, R. S., Seth, A. C., et al. 2011, ApJS, 195, 18 CrossRefGoogle Scholar
Richardson, J. C., Ferguson, A. M. N., Johnson, R. A., et al. 2008, AJ, 135, 1998 Google Scholar
Seth, A., de Jong, R., & Dalcanton, J., GHOSTS Team. 2007, in IAU Symposium, Vol. 241, IAU Symposium, ed. Vazdekis, A. & Peletier, R., 523524 Google Scholar
Sandin, C. 2014, A&A, 567, 97 Google Scholar
Sandin, C. 2015, A&A, 577, A106 Google Scholar
Seth, A. C., Dalcanton, J. J., & de Jong, R. S. 2005, AJ, 130, 1574 Google Scholar
Slater, C. T., Harding, P., & Mihos, J. C. 2009, PASP, 121, 1267 CrossRefGoogle Scholar
Streich, D., de Jong, R. S., Bailin, J., et al. 2015, ArXiv e-printsGoogle Scholar
Tanaka, M., Chiba, M., Komiyama, Y., Guhathakurta, P., & Kalirai, J. S. 2011, ApJ, 738, 150 Google Scholar
Thilker, D. A., Bianchi, L., Meurer, G., et al. 2007, ApJSupp, 173, 538 CrossRefGoogle Scholar
van Dokkum, P. G., Abraham, R., & Merritt, A. 2014, ApJ, 782, L24 Google Scholar
van Dokkum, P. G., Abraham, R., Brodie, J., et al. 2016, arXiv:1606.06291Google Scholar
van Dokkum, P. G., Romanowsky, A. J., Abraham, R., et al. 2015, ApJLett, 804, L26 Google Scholar
van Dokkum, P. G., Abraham, R., Merritt, A., et al. 2015, ApJLett, 798, L45 Google Scholar
Vlajić, M., Bland-Hawthorn, J., & Freeman, K. C. 2011, ApJ, 732, 7 Google Scholar
Watkins, A. E., Mihos, J. C., & Harding, P. 2016, ArXiv e-printsGoogle Scholar
Watkins, A. E., Mihos, J. C., Harding, P., & Feldmeier, J. J. 2014, ApJ, 791, 38 Google Scholar