Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T09:03:18.970Z Has data issue: false hasContentIssue false

The probability distribution of ellipticity: implications for weak lensing measurement

Published online by Cambridge University Press:  01 July 2015

Massimo Viola*
Affiliation:
Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The weak lensing effect generates spin-2 distortions, referred to as shear, on the observable shape of distant galaxies, induced by intervening gravitational tidal fields. Traditionally, the spin-2 distortion in the light distribution of distant galaxies is measured in terms of a galaxy ellipticity. This is a very good unbiased estimator of the shear field in the limit that a galaxy is measured at infinite signal-to-noise. However, the ellipticity is always defined as a ratio between two quantities (for example, between the polarisation and measurement of the galaxy size, or between the semi-major and semi-minor axis of the galaxy) and therefore requires some non-linear combination of the image pixels. This means, in any realistic case, this would lead to biases in the measurement of the shear (and hence in the cosmological parameters) whenever noise is present in the image. This type of bias can be understood from the particular shape of the 2D probability distribution of the ellipticity of an object measured from data. Moreover this probability distribution can be used to explore strategies for calibration of noise biases in present and future weak lensing surveys (e.g. KiDS, DES, HSC,Euclid, LSST...)

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bridle, S., Balan, S. T., Bethge, M., Gentile, M., Harmeling, S., Heymans, C., Hirsch, M., Hosseini, R., Jarvis, M., & Kirk, D. 2009, ArXiv e-prints 0908.0945Google Scholar
Heymans, C., VanWaerbeke, L. Waerbeke, L., Bacon, D., Berge, J., Bernstein, G., Bertin, E., Bridle, S., Brown, M. L., Clowe, D., et al. 2006, MNRAS, 368, 1323CrossRefGoogle Scholar
Hoekstra, H., Bartelmann, M., Dahle, H., Israel, H., Limousin, M., & Meneghetti, M. 2013, SSR, 177, 75Google Scholar
Kilbinger, M., Fu, L., Heymans, C., Simpson, F., Benjamin, J., Erben, T., Harnois-Déraps, J., Hoekstra, H., et al. 2013, MNRAS, p. 735Google Scholar
Kitching, T. D., Balan, S. T., Bridle, S., Cantale, N., Courbin, F., Eifler, T., Gentile, M., Gill, M. S. S., Harmeling, S., Heymans, C., et al. 2012, MNRAS, 423, 3163CrossRefGoogle Scholar
Marsaglia, G., 1965, j-J-AM-STAT-ASSOC, 60, 193CrossRefGoogle Scholar
Massey, R., Heymans, C., Bergé, J., Bernstein, G., Bridle, S., Clowe, D., Dahle, H., Ellis, R., Erben, T., et al. 2007, MNRAS, 376, 13CrossRefGoogle Scholar
Melchior, P. & Viola, M. 2012, MNRAS, 424, 2757CrossRefGoogle Scholar
Miller, L., Heymans, C., Kitching, T. D., van Waerbeke, L., Erben, T., & Hildebrandt, H. 2013, MNRAS, 429, 2858Google Scholar
Schneider, P. & Seitz, C. 1995, A&A, 294, 411Google Scholar
Schrabback, T., Hartlap, J., Joachimi, B., Kilbinger, M., Simon, P., Benabed, K., Bradač, M., Eifler, T., Erben, T., et al. 2010, A&A, 516, A63+Google Scholar
Seitz, C. & Schneider, P. 1997, A&A, 318, 687Google Scholar
Tin, M., 1965, j-J-AM-STAT-ASSOC, 60, 294CrossRefGoogle Scholar
Wardle, J. F. C. & Kronberg, P. P. 1974, ApJ, 194, 249Google Scholar
Viola, M., Kitching, T. D., & Joachimi, B. 2014, MNRAS, 439, 1909Google Scholar