Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T15:59:49.542Z Has data issue: false hasContentIssue false

PRISM: Sparse recovery of the primordial spectrum from WMAP9 and Planck datasets

Published online by Cambridge University Press:  01 July 2015

P. Paykari
Affiliation:
Service d'Astrophysique, CEA Saclay, F-91191 Gif sur Yvette cedex, France. email: [email protected]
F. Lanusse
Affiliation:
Service d'Astrophysique, CEA Saclay, F-91191 Gif sur Yvette cedex, France. email: [email protected]
J.-L. Starck
Affiliation:
Service d'Astrophysique, CEA Saclay, F-91191 Gif sur Yvette cedex, France. email: [email protected]
F. Sureau
Affiliation:
Service d'Astrophysique, CEA Saclay, F-91191 Gif sur Yvette cedex, France. email: [email protected]
J. Bobin
Affiliation:
Service d'Astrophysique, CEA Saclay, F-91191 Gif sur Yvette cedex, France. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The primordial power spectrum is an indirect probe of inflation or other structure-formation mechanisms. We introduce a new method, named PRISM, to estimate this spectrum from the empirical cosmic microwave background (CMB) power spectrum. This is a sparsity-based inversion method, which leverages a sparsity prior on features in the primordial spectrum in a wavelet dictionary to regularise the inverse problem. This non-parametric approach is able to reconstruct the global shape as well as localised features of the primordial spectrum accurately and proves to be robust for detecting deviations from the currently favoured scale-invariant spectrum. We investigate the strength of this method on a set of WMAP nine-year simulated data for three types of primordial spectra and then process the WMAP nine-year data as well as the Planck PR1 data. We find no significant departures from a near scale-invariant spectrum.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bobin, J., Sureau, F., Starck, J.-L., Rassat, A., & Paykari, P. 2014, AA, 563, A105Google Scholar
Candes, E. J., Wakin, M. B., & Boyd, S. P. 2008, JFAA, 14 (5):877Google Scholar
Guth, A. H. 1981, Phys. Rev. D, 23, 347CrossRefGoogle Scholar
Hivon, E., G?orski, K. M., Netterfield, C. B., et al. 2002, ApJ, 567, 2Google Scholar
Hou, Z., Reichardt, C. L., Story, K. T., et al. 2012, ArXiv e-printsGoogle Scholar
Linde, A. D. 1982, Physics Letters B, 108, 389Google Scholar
Paykari, P., Lanusse, F., Starck, J.-L., Sureau, F., & Bobin, J. 2014, AA, 566, A77Google Scholar
Paykari, P., Starck, J.-L., & Fadili, M. J. 2012, AA, 541, A74Google Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2013a, ArXiv e-printsGoogle Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2013b, ArXiv e-printsGoogle Scholar