Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T03:11:26.718Z Has data issue: false hasContentIssue false

Predicting the Loci of Solar Eruptions

Published online by Cambridge University Press:  24 July 2018

N. Gyenge
Affiliation:
Solar Physics and Space Plasmas Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield email: [email protected] Debrecen Heliophysical Observatory (DHO), Konkoly Observatory, Research Centre for Astronomy and Earth Sciences Hungarian Academy of Sciences, Debrecen, P.O.Box 30, H-4010, Hungary Dept. of Astronomy, Eötvös L. University, Pázmány P. sétány 1/A Budapest, H-1117, Hungary
R. Erdélyi
Affiliation:
Solar Physics and Space Plasmas Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield email: [email protected] Dept. of Astronomy, Eötvös L. University, Pázmány P. sétány 1/A Budapest, H-1117, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The longitudinal distribution of solar active regions shows non-homogeneous spatial behaviour, which is often referred to as Active Longitude (AL). Evidence for a significant statistical relationships between the AL and the longitudinal distribution of flare and coronal mass ejections (CME) occurrences is found in Gyenge et al. 2017 (ApJ, 838, 18). The present work forecasts the spatial position of AL, hence the most flare/CME capable active regions are also predictable. Our forecast method applies Autoregressive Integrated Moving Average model for the next 2 years time period. We estimated the dates when the solar flare/CME-capable longitudinal belts face towards Earth.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Balthasar, H. 2007, A&A, 471, 281Google Scholar
Berdyugina, S. V., Moss, D., Sokoloff, D. & Usoskin, I. G. 2006, A&A, 445, 703Google Scholar
Bumba, V., et al. 1965, ApJ, 141, 14921517CrossRefGoogle Scholar
Bogart, R. S. 1982, Sol. Phys, 76, 155CrossRefGoogle Scholar
Box, G E P, Jenkins, G M, 1968, Applied Statistics, 17 (2), 91-109CrossRefGoogle Scholar
Box, G E P, Jenkins, G M, Reinsel, G C, 1994, Time Series Analysis, Forecasting and ControlGoogle Scholar
Chatfield, C. 1975, Chapman and Hall, London (see also, 6th ed., 2003)Google Scholar
Ester, M., Kriegel, H. P., Sander, J. & Xu, X. 1996, pp. 226231Google Scholar
Gyenge, N., Singh, T., Kiss, T. S., Srivastava, A. K. & Erdélyi, R. 2017, ApJ, 838, 1, 10 ppCrossRefGoogle Scholar
Ho, S. L. & Xie, M. 1998, Computers & industrial engineering, 35, 213216CrossRefGoogle Scholar
Korsós, M. B. & Erdélyi, R. 2016, ApJ, 823, 2, 11 ppCrossRefGoogle Scholar
Korsós, M. B., Baranyi, T. & Ludmány, A. 2016, ApJ, 789, 2, 7 ppGoogle Scholar
Zhang, L. Y., Mursula, K., Usoskin, I. G. & Wang, H. N. 2011, JASTP, 73, 2–3, p. 258-263Google Scholar