Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T18:47:10.650Z Has data issue: false hasContentIssue false

Predicting the Emergence of Solar Active Regions Using Machine Learning

Published online by Cambridge University Press:  23 December 2024

Spiridon Kasapis*
Affiliation:
NASA Advanced Supercomputing Division, NASA Ames Research Center, N258, Moffett Field, CA 94035, United States
Irina N. Kitiashvili
Affiliation:
NASA Advanced Supercomputing Division, NASA Ames Research Center, N258, Moffett Field, CA 94035, United States
Alexander G. Kosovichev
Affiliation:
NASA Advanced Supercomputing Division, NASA Ames Research Center, N258, Moffett Field, CA 94035, United States Department of Physics, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, United States
John T. Stefan
Affiliation:
Department of Physics, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, United States
Bhairavi Apte
Affiliation:
Department of Physics, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, United States
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To create early warning capabilities for upcoming Space Weather disturbances, we have selected a dataset of 61 emerging active regions, which allows us to identify characteristic features in the evolution of acoustic power density to predict continuum intensity emergence. For our study, we have utilized Doppler shift and continuum intensity observations from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The local tracking of 30.66 × 30.66-degree patches in the vicinity of active regions allowed us to trace the evolution of active regions starting from the pre-emergence state. We have developed a machine learning model to capture the acoustic power flux density variations associated with upcoming magnetic flux emergence. The trained Long Short-Term Memory (LSTM) model is able to predict 5 hours ahead whether, in a given area of the solar surface, continuum intensity values will decrease. The performed study allows us to investigate the potential of the machine learning approach to predict the emergence of active regions using acoustic power maps as input.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Attié, R., Kirk, M. S., Thompson, B. J., Muglach, K., & Norton, A. A. 2018, Precursors of magnetic flux emergence in the moat flows of active region ar12673. Space Weather, 16(8), 11431155.CrossRefGoogle Scholar
Barnes, G., Birch, A., Leka, K., & Braun, D. 2014, Helioseismology of pre-emerging active regions. iii. statistical analysis. The Astrophysical Journal, 786(1), 19.CrossRefGoogle Scholar
Basodi, S., Ji, C., Zhang, H., & Pan, Y. 2020, Gradient amplification: An efficient way to train deep neural networks. Big Data Mining and Analytics, 3(3), 196207.CrossRefGoogle Scholar
Birch, A., Braun, D., Leka, K., Barnes, G., & Javornik, B. 2012, Helioseismology of pre-emerging active regions. ii. average emergence properties. The Astrophysical Journal, 762(2), 131.CrossRefGoogle Scholar
Gottschling, N., Schunker, H., Birch, A., Löptien, B., & Gizon, L. 2021, Evolution of solar surface inflows around emerging active regions. Astronomy & Astrophysics, 652, A148.CrossRefGoogle Scholar
Hartlep, T., Kosovichev, A. G., Zhao, J., & Mansour, N. N. 2011, Signatures of emerging subsurface structures in acoustic power maps of the sun. Solar Physics, 268, 321327.CrossRefGoogle Scholar
Harvey, J., Hill, F., Hubbard, R., Kennedy, J., Leibacher, J., Pintar, J., Gilman, P., Noyes, R., Title, A., Toomre, J., et al. 1996, The global oscillation network group (gong) project. Science, 272(5266), 12841286.CrossRefGoogle ScholarPubMed
Hochreiter, S. & Schmidhuber, J. 1997, Long short-term memory. Neural computation, 9(8), 17351780.CrossRefGoogle ScholarPubMed
Hua, Y., Zhao, Z., Li, R., Chen, X., Liu, Z., & Zhang, H. 2019, Deep learning with long short-term memory for time series prediction. IEEE Communications Magazine, 57(6), 114119.CrossRefGoogle Scholar
Ilonidis, S., Zhao, J., & Hartlep, T. 2013, Helioseismic investigation of emerging magnetic flux in the solar convection zone. The Astrophysical Journal, 777(2), 138.CrossRefGoogle Scholar
Ilonidis, S., Zhao, J., & Kosovichev, A. 2011, Detection of emerging sunspot regions in the solar interior. Science, 333(6045), 993996.CrossRefGoogle ScholarPubMed
Korpi–Lagg, M. J., Korpi–Lagg, A., Olspert, N., & Truong, H.-L. 2022, Solar-cycle variation of quiet-sun magnetism and surface gravity oscillation mode. Astronomy & Astrophysics, 665, A141.CrossRefGoogle Scholar
Kosovichev, A., Duvall, T., & Scherrer, P. 2001, Time-distance inversion methods and results (invited review). Helioseismic Diagnostics of Solar Convection and Activity, 159176.Google Scholar
Leka, K., Barnes, G., Birch, A., Gonzalez–Hernandez, I., Dunn, T., Javornik, B., & Braun, D. 2012, Helioseismology of pre-emerging active regions. i. overview, data, and target selection criteria. The Astrophysical Journal, 762(2), 130.CrossRefGoogle Scholar
Rees–Crockford, T., Nelson, C., & Mathioudakis, M. 2022, Preemergence signatures of horizontal divergent flows in solar active regions. The Astrophysical Journal, 940(2), 109.CrossRefGoogle Scholar
Sak, H., Senior, A. W., & Beaufays, F. 2014, Long short-term memory recurrent neural network architectures for large scale acoustic modeling.CrossRefGoogle Scholar
Scherrer, P. H., Bogart, R. S., Bush, R., Hoeksema, J.-a., Kosovichev, A., Schou, J., Rosenberg, W., Springer, L., Tarbell, T., Title, A., et al. 1995, The solar oscillations investigation-michelson doppler imager. The soho mission, 129188.Google Scholar
Scherrer, P. H., Schou, J., Bush, R., Kosovichev, A., Bogart, R., Hoeksema, J., Liu, Y., Duvall, T., Zhao, J., Title, A., et al. 2012, The helioseismic and magnetic imager (hmi) investigation for the solar dynamics observatory (sdo). Solar Physics, 275, 207227.CrossRefGoogle Scholar
Singh, N. K., Raichur, H., & Brandenburg, A. 2016, High-wavenumber solar f-mode strengthening prior to active region formation. The Astrophysical Journal, 832(2), 120.CrossRefGoogle Scholar
Stefan, J. T. & Kosovichev, A. G. 2023, Exploring the connection between helioseismic travel time anomalies and the emergence of large active regions during solar cycle 24. The Astrophysical Journal, 948(1), 1.CrossRefGoogle Scholar
Tealab, A. 2018, Time series forecasting using artificial neural networks methodologies: A systematic review. Future Computing and Informatics Journal, 3(2), 334340.CrossRefGoogle Scholar
Waidele, M., Roth, M., Singh, N., & Käpylä, P. 2023, On strengthening of the solar f-mode prior to active region emergence using the fourier-hankel analysis. Solar Physics, 298(2), 30.CrossRefGoogle Scholar