Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T17:38:37.238Z Has data issue: false hasContentIssue false

A Precise Estimate of the Radius of HD 149026b

Published online by Cambridge University Press:  01 May 2008

Philip Nutzman
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 email: [email protected]
David Charbonneau
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 email: [email protected] Alfred P. Sloan Research Fellow
Joshua N. Winn
Affiliation:
Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Heather A. Knutson
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 email: [email protected]
Jonathan J. Fortney
Affiliation:
Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064
Matthew J. Holman
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 email: [email protected]
Eric Agol
Affiliation:
Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present Spitzer 8 μm transit observations of the extrasolar planet system HD 149026b. At this wavelength, transit light curves are weakly affected by stellar limb-darkening, allowing for a simpler and more accurate determination of planetary parameters. We measure a planet-star radius ratio of Rp/R∗=0.05158±0.00077, and in combination with ground-based data and independent constraints on the stellar mass and radius, we derive an orbital inclination of i = 85°.4+0°.9−0°.8 and a planet radius of 0.755 ± 0.040 RJ. These measurements further support models in which the planet is greatly enriched in heavy elements.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Charbonneau, D., et al. 2006, ApJ, 636, 445CrossRefGoogle Scholar
Fortney, J. J., Saumon, D., Marley, M. S., Lodders, K., & Freedman, R. S. 2006, Nature, 642, 495Google Scholar
Fortney, J. J., Lodders, K., Marley, M. S., & Freedman, R. S. 2008, ApJ, 678, 1419CrossRefGoogle Scholar
Harrington, J., Luszcz, S., Seager, S., Deming, D., & Richardson, L. J. 2007, Nature, 447, 691CrossRefGoogle Scholar
Kervella, P., Thévenin, F., Di Folco, E., & Ségransan, D. 2004, Astronomy & Astrophysics, 426, 297CrossRefGoogle Scholar
Knutson, H. A., et al. 2007, Nature, 447, 183CrossRefGoogle Scholar
Nutzman, P., Charbonneau, D., Winn, J. N., Knutson, H. A., Fortney, J. J., Holman, M. J., & Agol, E. 2008, ArXiv e-prints, 805, arXiv:0805.0777Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996, Icarus, 124, 62CrossRefGoogle Scholar
Sato, B., et al. 2005, ApJ, 633, 465CrossRefGoogle Scholar
Winn, J. N., Henry, G. W., Torres, G., & Holman, M. J. 2008, ApJ, 675, 1531CrossRefGoogle Scholar