Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T02:02:51.286Z Has data issue: false hasContentIssue false

The potential of using KMOS for multi-object massive star spectroscopy

Published online by Cambridge University Press:  28 July 2017

Michael Wegner
Affiliation:
University Observatory Munich, Scheinerstr. 1, 81679 München, Germany, email: [email protected]
Ralf Bender
Affiliation:
University Observatory Munich, Scheinerstr. 1, 81679 München, Germany, email: [email protected] Max Planck Institute for Extraterrestrial Physics, Gießenbachstr. 1, 85748 Garching, Germany
Ray Sharples
Affiliation:
Durham University, Departement of Physics, South Rd, Durham DH1 3LE, UK
the KMOS Team
Affiliation:
University Observatory Munich, Scheinerstr. 1, 81679 München, Germany, email: [email protected] Durham University, Departement of Physics, South Rd, Durham DH1 3LE, UK Max Planck Institute for Extraterrestrial Physics, Gießenbachstr. 1, 85748 Garching, Germany UK Astronomy Technology Centre Edinburgh, Blackford Hill, EH9 3HJ, Edinburgh, UK Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

KMOS, the “K-Band Multi-Object Spectrometer”, was built by a British-German consortium as a second generation instrument for the ESO Paranal Observatory. It is available to the user community since its successful commissioning in 2013 (Sharples et al. 2013). As a multi-object integral field spectrometer for the near infrared, KMOS offers 24 deployable IFUs of 2.8x2.8 arcsec and 14x14 spatial pixels each, which can either be placed individually within a 7.2 arcmin field of view or combined in a Mosaic mode in order to map contiguous fields on sky. The instrument covers the whole range of NIR atmospheric windows (0.8. . .2.5μm) with 5 spectral bands and a resolution of R ≈ 3000. . .4000.

Although the main science driver for KMOS was to enable the study of galaxy formation and evolution through multiplexed observations of high-redshift galaxies, KMOS also already exhibited its tremendous potential for the spectroscopy of massive stars: A quantitative study of 27 RSGs in NGC 300 (Gazak et al. 2015) proves its applicability for the spectroscopy of individual stars even beyond the Local Group. A Mosaic observation of the Galactic centre (Feldmeier-Krause et al. 2015) demonstrates how spectra of early-type stars can be extracted from a contiguous field. Other applications include (but need not be limited to) velocity determinations of globular cluster stars, observations of jets/outflows of high mass protostars, or contiguous mapping of star-forming regions.

We therefore aim at presenting the excellent capabilities of KMOS to a wider community and indicate potential applications.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Sharples, R., Bender, R., Agudo Berbel, A., Bezawada, N., Castillo, R., Cirasuolo, M., Davidson, G., Davies, R., Dubbeldam, M., Fairley, A., Finger, G., Förster Schreiber, N., Gonte, F., Hess, H.-J., Jung, I., Lewis, I., Lizon, J.-L., Muschielok, B., Pasquini, L., Pirard, J., Popovic, D., Ramsay, S., Rees, P., Richter, J., Riquelme, M., Rodrigues, M., Saviane, I., Schlichter, J., Schmidtobreick, L., Segovia, A., Smette, A., Szeifert, T., van Kesteren, A., Wegner, M., & Wiezorrek, E., 2013, The Messenger, 151, 21 Google Scholar
Gazak, J. Z., Kudritzki, R., Evans, C., Patrick, L., Davies, B., Bergemann, M., Plez, B., Bresolin, F., Bender, R., Wegner, M., Bonanos, A. Z., & Williams, S. J., 2015, ApJ, 805, 182 Google Scholar
Feldmeier-Krause, A., Neumayer, N., Schödel, R., Seth, A., Hilker, M., de Zeeuw, P. T., Kuntschner, H., Walcher, C. J., Lützgendorf, N., & Kissler-Patig, M., 2015, A&A, 584, A2 Google Scholar