Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T02:35:45.697Z Has data issue: false hasContentIssue false

The potential of Ca II K observations for solar activity and variability studies

Published online by Cambridge University Press:  27 November 2018

Ilaria Ermolli
Affiliation:
INAF – Osservatorio Astronomico di Roma, Monte Porzio Catone, Italy
Theodosios Chatzistergos
Affiliation:
INAF – Osservatorio Astronomico di Roma, Monte Porzio Catone, Italy Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
Natalie A. Krivova
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
Sami K. Solanki
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany School of Space Research, Kyung Hee University, Republic of Korea
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several observatories around the globe started regular full-disc imaging of the solar atmosphere in the Ca II K line in the early decades of the 20th century. These observations are continued today at a few sites with either old spectroheliographs or modern telescopes equipped with narrow-band filters. The Ca II K time series are unique in representing long-term variations of the Sun’s chromospheric magnetic field. However, meaningful results from their analysis require accurate processing of the available data and robust merging of the information stored in different archives. This paper provides an overview of the historical and modern full-disc Ca II K observations, with focus on their quality and the main results obtained from their analysis over the last decade.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Babcock, H. W., & Babcock, H. D., 1955, ApJ, 121, 349Google Scholar
Chatterjee, S., Banerjee, D., & Ravindra, B. 2016. ApJ, 827, id.87Google Scholar
Chatterjee, S., Mandal, S., & Banerjee, D. 2017, ApJ, 841, id.70Google Scholar
Chatzistergos, T. 2017, Analysis of historical solar observations and long-term changes in solar irradiance (Uni-edition), GöttingenGoogle Scholar
Chatzistergos, T., Ermolli, I., Solanki, S. K., & Krivova, N. A. 2018a, A&A, 609, A.92Google Scholar
Chatzistergos, T., Ermolli, I., Solanki, S. K., & Krivova, N. A. 2018b, Proc. IAU Symposium 340Google Scholar
Ermolli, I., Berrilli, F., & Florio, A., 2003, A&A, 523, 857Google Scholar
Ermolli, I., Criscuoli, S., Centrone, M., Giorgi, F., & Penza, V., 2007, A&A, 523, 305Google Scholar
Ermolli, I., Marchei, E., Centrone, M., et al. 2009a, A&A, 499, 627Google Scholar
Ermolli, I., Solanki, S. K., & Tlatov, A. G., et al. 2009b, ApJ, 698, 1000Google Scholar
Ermolli, I., Criscuoli, S., Uitenbroek, H., et al. 2010, A&A, 523, A.55Google Scholar
Fontenla, J. M., Avrett, E. H., & Loeser, R., 1993, ApJ, 406, 319Google Scholar
Foukal, P., 1996, GeoRL, 23, 2169Google Scholar
Foukal, P. & Milano, L., 2001, GeoRL, 28, 883Google Scholar
Foukal, P., Bertello, L., Livingston, W. C., et al. 2009 SolPhys, 255, 229Google Scholar
Harvey, K., 1992, The solar cycle, ASP Conference Series, 27, 335Google Scholar
Linsky, J. L. & Avrett, E. H., 1970, PASP, 82, 169Google Scholar
Pevtsov, A. A., Virtanen, I., Mursula, K., Tlatov, A., & Bertello, L. 2016, A&A, 585, A.40Google Scholar
Priyal, M., Singh, J., Ravindra, B., Priya, T. G., Amareswari, K. 2014 SolPhys, 289, 137Google Scholar
Sheeley, N. R., Cooper, T. J. Jr, & Anderson, J. R. L., 2011, ApJ, 730, 51Google Scholar
Skumanich, A., Lean, J. L., Livingston, W. C., & White, O. R., 1984, ApJ, 282, 776Google Scholar
Tlatov, A. G., Pevtsov, A. A. & Singh, J. 2009 SolPhys, 255, 239Google Scholar
Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al. 2009 SolPhys, 249, 167Google Scholar
Vernazza, J. E.;, Avrett, E. H., & Loeser, R., 1981, ApJS, 45, 635Google Scholar