Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T20:58:21.791Z Has data issue: false hasContentIssue false

Post-starburst galaxies in different environments

Published online by Cambridge University Press:  29 March 2021

Rodolfo Spindler
Affiliation:
Department of Astronomy, Institute of Physics, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS, 91501-970, Brazil email: [email protected]
Marina Trevisan
Affiliation:
Department of Astronomy, Institute of Physics, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS, 91501-970, Brazil email: [email protected]
Allan Schnorr-Müller
Affiliation:
Department of Astronomy, Institute of Physics, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, RS, 91501-970, Brazil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Post-starburst galaxies (PSBGs) are systems that experienced a burst followed by a rapid quenching of star formation. However, it is still unclear what causes these events and what is the environmental role in the origin of PSBGs. To address this, we analysed sizes, morphologies, ages, and metallicities of PSBGs at 0.05 ≤ z ≤ 0.1 in groups and clusters of galaxies. We find a statistically significant excess of compact PSBGs in groups compared to a control sample of passive galaxies. Satellite PSBGs in groups tend to be more compact compared to their counterparts in clusters. Additionally, the PSBGs in groups have smaller T-type values and are likely to be found in inner group regions compared to PSBGs in clusters. Our results are compatible with dissipative wet merger events being an important mechanism responsible for the origin of PSBGs in groups, but other – less dissipative – processes may be producing PSBGs in cluster environments.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Blake, C., Pracy, M. B., Couch, W. J., et al. 2004, MNRAS, 355, 713 10.1111/j.1365-2966.2004.08351.xCrossRefGoogle Scholar
Cid Fernandes, R., Mateus, A., Sodré, L. , Jr, et al. 2005, MNRAS, 358, 363 10.1111/j.1365-2966.2005.08752.xCrossRefGoogle Scholar
de Ravel, L., Le Fèvre, O., Tresse, L., et al. 2009, A&A, 498, 379 Google Scholar
Dominguéz Sanchéz, H., Huertas-Company, M., Bernardi, M., et al. 2018, MNRAS, 476, 3661 10.1093/mnras/sty338CrossRefGoogle Scholar
Dressler, A. & Gunn, J. E. 1983, ApJ, 270, 7 10.1086/161093CrossRefGoogle Scholar
Dressler, A., Oemler, A. Jr., Poggianti, B. M., et al. 2013, ApJ, 770, 62 10.1088/0004-637X/770/1/62CrossRefGoogle Scholar
Simard, L., Mendel, J. T., Patton, D. R., et al. 2011, ApJS, 196, 11 10.1088/0067-0049/196/1/11CrossRefGoogle Scholar
Trevisan, M., Ferreras, I., de La Rosa, I. G., et al. 2012, ApJL, 752, L27 10.1088/2041-8205/752/2/L27CrossRefGoogle Scholar
van der Wel, A., Franx, M., van Dokkum, P. G., et al. 2014, ApJ, 788, 28 10.1088/0004-637X/788/1/28CrossRefGoogle Scholar
Vazdekis, A., Coelho, P., Cassisi, S., et al. 2015, MNRAS, 449, 1177 10.1093/mnras/stv151CrossRefGoogle Scholar
von der Linden, A., Wild, V., Kauffmann, G., et al. 2010, MNRAS, 404, 1231 Google Scholar
Wild, V., Kauffmann, G., Heckman, T., et al. 2007, MNRAS, 381, 543 10.1111/j.1365-2966.2007.12256.xCrossRefGoogle Scholar
Wild, V., Walcher, C. J., Johansson, P. H., et al. 2009, MNRAS, 395, 144 10.1111/j.1365-2966.2009.14537.xCrossRefGoogle Scholar
Yang, X., Mo, H. J., van den Bosch, F. C., et al. 2007, ApJ, 671, 153 10.1086/522027CrossRefGoogle Scholar
Zabludoff, A. I., Zaritsky, D., Lin, H., et al. 1996, ApJ, 466, 104 10.1086/177495CrossRefGoogle Scholar