Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T18:02:26.930Z Has data issue: false hasContentIssue false

Population III Gamma-Ray Burst

Published online by Cambridge University Press:  05 September 2012

Kunihito Ioka
Affiliation:
KEK Theory Center, 1-1 Oho, Tsukuba 305-0801, Japan email: [email protected]
Yudai Suwa
Affiliation:
KEK Theory Center, 1-1 Oho, Tsukuba 305-0801, Japan email: [email protected]
Hiroki Nagakura
Affiliation:
KEK Theory Center, 1-1 Oho, Tsukuba 305-0801, Japan email: [email protected]
Rafael S. de Souza
Affiliation:
KEK Theory Center, 1-1 Oho, Tsukuba 305-0801, Japan email: [email protected]
Naoki Yoshida
Affiliation:
KEK Theory Center, 1-1 Oho, Tsukuba 305-0801, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gamma-ray bursts (GRBs) are unique probes of the first generation (Pop III) stars. We show that a relativistic gamma-ray burst (GRB) jet can potentially pierce the envelope of a very massive Pop III star even if the Pop III star has a supergiant hydrogen envelope without mass loss, thanks to the long-lived powerful accretion of the envelope itself. While the Pop III GRB is estimated to be energetic (Eγ,iso ~ 1055 erg), the supergiant envelope hides the initial bright phase in the cocoon component, leading to a GRB with a long duration ~1000 (1 + z) s and an ordinary isotropic luminosity ~ 1052 erg s−1 (~ 10−9 erg cm−2 s−1 at redshift z ~ 20), although these quantities are found to be sensitive to the core and envelope mass. We also show that Pop III.2 GRBs (which are primordial but affected by radiation from other stars) occur >100 times more frequently than Pop III.1 GRBs, and thus should be suitable targets for future X-ray and radio missions. The radio transient surveys are already constraining the Pop III GRB rate and promising in the future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002 Science, 295, 93Google Scholar
Bromm, V., Coppi, P. S., & Larson, R. B. 2002 ApJ, 564, 23Google Scholar
de Souza, R. S., Yoshida, N., & Ioka, K. 2011 A&A, 533, A32Google Scholar
Ioka, K. 2003, ApJ, 598, L79Google Scholar
Ioka, K. & Mészáros, P. 2005 ApJ, 619, 684Google Scholar
Ioka, K. 2010 Prog. Theor. Phys., 124, 667Google Scholar
Ioka, K., Ohira, Y., Kawakana, N., & Mizuta, A. 2011 Prog. Theor. Phys., 126, 555Google Scholar
Komissarov, S. S., & Barkov, M. V. 2010 MNRAS, 402, L25Google Scholar
Matzner, C. D. 2003 MNRAS, 345, 575Google Scholar
Mészáros, P. & Rees, M. J. 2010 Apj, 715, 967Google Scholar
Nagakura, H., Suwa, Y., & Ioka, K. 2011 arXiv:1104.5691Google Scholar
Ohkubo, T., Nomoto, K., Umeda, H., Yoshida, N., & Tsuruta, S. 2009 Apj, 706, 1184Google Scholar
Omukai, K., & Palla, F. 2003 Apj, 589, 677Google Scholar
Suwa, Y., & Ioka, K. 2011 ApJ, 726, 107Google Scholar
Yoshida, N., Omukai, K., & Hernquist, L. 2008 Science, 321, 669Google Scholar