Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T14:48:12.032Z Has data issue: false hasContentIssue false

Plasma heating in the initial phase of solar flares

Published online by Cambridge University Press:  26 February 2010

P. Rudawy
Affiliation:
Astronomical Institute, University of Wrocław, 51-622 Wrocław, ul. Kopernika 11, Poland email: [email protected]; [email protected]
M. Siarkowski
Affiliation:
Space Research Centre, Polish Academy of Sciences, 51-622 Wrocław, ul. Kopernika 11, Poland email: [email protected]
R. Falewicz
Affiliation:
Astronomical Institute, University of Wrocław, 51-622 Wrocław, ul. Kopernika 11, Poland email: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we analyze soft and hard X-ray emission of the 2002 September 20 M1.8 GOES class solar flare observed by RHESSI and GOES satellites, where soft X-ray emission precedes the onset of the main bulk hard X-ray emission by ~5 min. This suggests that an additional heating mechanism may be at work at the early beginning of the flare. However RHESSI spectra indicate presence of the non-thermal electrons also before impulsive phase. So, we assumed that a dominant energy transport mechanism during rise phase of solar flares is electron beam-driven evaporation. We used non-thermal electron beams derived from RHESSI spectra as the heating source in a hydrodynamic model of the analyzed flare. We showed that energy delivered by non-thermal electron beams is sufficient to heat the flare loop to temperatures in which it emits soft X-ray closely following the GOES 1–8 Å light-curve.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Battaglia, M., Fletcher, L., & Benz, A. O. 2009, A&A, 498, 891Google Scholar
Dennis, B. R. 1988, Solar Phys., 118, 49CrossRefGoogle Scholar
Falewicz, R., Rudawy, P., & Siarkowski, M. 2009, A&A, 500, 901Google Scholar
Heyvaerts, J., Priest, E. R., & Rust, D. M. 1977, ApJ, 216, 123CrossRefGoogle Scholar
Li, H.-W., Pallavicini, R., & Cheng, C. 1987, Solar Phys., 107, 271CrossRefGoogle Scholar
Lin, R. P., Dennis, B. R., Hurford, G. J., et al. 2002, Solar Phys., 210, 3CrossRefGoogle Scholar
Machado, M. E., Orwig, L. E., & Antonucci, E. 1986, Adv. Space Res., 6 (6), 101CrossRefGoogle Scholar
Mariska, J. T., Boris, J. P., Oran, E. S., Young, T. R. Jr., & Doschek, G. A. 1982, ApJ, 255, 738CrossRefGoogle Scholar
Mariska, J. T., Emslie, A. G., & Li, P. 1989, ApJ, 341, 1067CrossRefGoogle Scholar
Neupert, W. M. 1986, ApJ, 153, L59CrossRefGoogle Scholar
Veronig, A., Vrsnak, B., Temmer, M., & Hanslmeier, A. 2002, Solar Phys., 208, 297CrossRefGoogle Scholar