Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T15:14:07.240Z Has data issue: false hasContentIssue false

Planetary Transits and Tidal Evolution

Published online by Cambridge University Press:  01 May 2008

Brian Jackson
Affiliation:
Lunar and Planetary Laboratory, University of Arizona1629 E University Blvd, Tucson AZ 85721-0092USA email: [email protected]
Rory Barne
Affiliation:
Lunar and Planetary Laboratory, University of Arizona1629 E University Blvd, Tucson AZ 85721-0092USA email: [email protected]
Richard Greenberg
Affiliation:
Lunar and Planetary Laboratory, University of Arizona1629 E University Blvd, Tucson AZ 85721-0092USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Transiting planets are generally close enough to their host stars that tides may govern their orbital and thermal evolution. We present calculations of the tidal evolution of recently discovered transiting planets and discuss their implications. The tidal heating that accompanies this orbital evolution can be so great that it controls the planet's physical properties and may explain the large radii observed in several cases, including, for example, TrES-4. Also, since a planet's transit probability depends on its orbit, it evolves due to tides. Current values depend sensitively on the physical properties of the star and planet, as well as on the system's age. As a result, tidal effects may introduce observational biases in transit surveys, which may already be evident in current observations. Transiting planets tend to be younger than non-transiting planets, an indication that tidal evolution may have destroyed many close-in planets. Also the distribution of the masses of transiting planets may constrain the orbital inclinations of non-transiting planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Alonso, R. et al. 2008, arXiv:0803.3207.Google Scholar
Anderson, D. et al. 2008, MNRAS 387, 14.CrossRefGoogle Scholar
Bakos, G. et al. 2007a, ApJ 656, 522.CrossRefGoogle Scholar
Bakos, G. et al. 2007b, ApJ 670, 826.CrossRefGoogle Scholar
Bakos, G. et al. 2007c, ApJ 671, L173.CrossRefGoogle Scholar
Barge, P. et al. 2008 2008, A&A 482, L17.Google Scholar
Barnes, J. 2007 2007, PASP 119, 986.CrossRefGoogle Scholar
Bonfils, X. et al. 2007, A&A 474, 293.Google Scholar
Burke, C. et al. 2008, arXiv:0805.2399.Google Scholar
Butler, P. et al. 2006, ApJ 646, 505.CrossRefGoogle Scholar
Christian, D. et al. 2008, arXiv:0806.1482.Google Scholar
Collier-Cameron, A. et al. 2007, MNRAS 375, 951.CrossRefGoogle Scholar
DaSilva, R. et al. 2006, A&A 446, 717.Google Scholar
Fischer, D. & Valenti, J. 2005, ApJ 622, 1102.CrossRefGoogle Scholar
Ge, J. et al. 2006, ApJ 648, 683.CrossRefGoogle Scholar
Gillon, M. et al. 2007, A&A 466, 743.Google Scholar
Gillon, M. et al. 2008, arXiv:0712.2073.Google Scholar
Gorda, S. & Svechnikov, M. 1998, Astronomy Reports 42, 793.Google Scholar
Henry, G. W. et al. 2000, ApJ 531, 415.CrossRefGoogle Scholar
Holman, M. et al. 2006, ApJ 652, 1715.CrossRefGoogle Scholar
Jackson, B., Greenberg, R., & Barnes, R. 2008a, ApJ 678, 1396.CrossRefGoogle Scholar
Jackson, B., Greenberg, R., & Barnes, R. 2008b, ApJ 681, 1631.CrossRefGoogle Scholar
Jackson, B. et al. 2008c, MNRAS submitted.Google Scholar
Jackson, B. et al. 2008d, in prep.Google Scholar
Johnson, J. et al. 2006, ApJ 652, 1724.CrossRefGoogle Scholar
Johnson, J. et al. 2008, arXiv:0806.1734.Google Scholar
Johns-Krull, C. et al. 2007, ApJ 677, 657.CrossRefGoogle Scholar
Joshi, Y. et al. 2008, arXiv:0806.1478.Google Scholar
Knutson, H. et al. 2007, ApJ 655, 564.CrossRefGoogle Scholar
Kovacs, G. et al. 2007, ApJ 670, L41.CrossRefGoogle Scholar
Liu, X. et al. 2008, arXiv:0805.1733.Google Scholar
Mandushev, G. et al. 2007, ApJ 667, L195.CrossRefGoogle Scholar
McCullough, P. et al. 2008, arXiv:0805.2921.Google Scholar
Noyes, R. et al. 2008, ApJ 673, L79.CrossRefGoogle Scholar
Nutzman, P. et al. 2008, arXiv:0805.0777.Google Scholar
O'Donovan, F. et al. 2007, ApJ 663, L37.CrossRefGoogle Scholar
Pal, A. et al. 2008, ApJ 680, 1450.CrossRefGoogle Scholar
Pepe, F. et al. 2004, A&A 423, 385.Google Scholar
Pollacco, D. et al. 2008, MNRAS 385, 1576.CrossRefGoogle Scholar
Pont, F. et al. 2007, A&A 465, 1069.Google Scholar
Rivera, E. et al. 2005, ApJ 634, 625.CrossRefGoogle Scholar
Torres, G. et al. 2007, ApJ 666, L121.CrossRefGoogle Scholar
Udalski, G. et al. 2008, A&A 482, 299.Google Scholar
Weldrake, D. et al. 2008, ApJ 675, L37.CrossRefGoogle Scholar
Wilson, J. et al. 2008, ApJ 675, L113.CrossRefGoogle Scholar
Winn, J. et al. 2008, arXiv:0804.4475.Google Scholar