Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T04:45:04.212Z Has data issue: false hasContentIssue false

Planetary dynamos: from equipartition to asymptopia

Published online by Cambridge University Press:  01 November 2008

Paul H. Roberts*
Affiliation:
IGPP University of California, Los Angeles, CA 90095, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This review focuses on three topics relevant to naturally-occurring dynamos. The first considers how a common belief, that states of equipartition of magnetic and kinetic energy are preferred in nonrotating systems, is modified when Coriolis forces are influential, as in the Earth's core. The second reviews current difficulties faced by planetary and stellar dynamo theories, particularly in representing the sub-grid scales. The third discusses recent attempts to extract scaling laws from numerical integrations of the Boussinesq dynamo equations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bloxham, J. & Jackson, A. 1992, J. Geophys. Res. 97, 19537CrossRefGoogle Scholar
Braginsky, S. I. 1964a, Geomag. & Aeron. 4, 898Google Scholar
Braginsky, S. I. 1964b, Geomag. & Aeron. 4, 732Google Scholar
Braginsky, S. I. 1975, Geomag. & Aeron. 15, 149Google Scholar
Braginsky, S. I. & Meytlis, V. P. 1990, Geophys. astrophys. Fluid Dynam. 55CrossRefGoogle Scholar
Braginsky, S. I. & Roberts, P. H. 1995, Geophys. astrophys. Fluid Dynam. 79, 1CrossRefGoogle Scholar
Braginsky, S. I. & Roberts, P. H. 2003, in: Ferriz-Mas, A. & Núñez, M. (eds.), Advances in Nonlinear Dynamos The Fluid Mechanics of Astrophysics and Geophysics (Taylor & Francis), vol. 9, p. 60CrossRefGoogle Scholar
Braginsky, S. I. & Roberts, P. H. 2007, in: Gubbins, D. & Herreo-Brevera, E. (eds.), Encyclopedia of Geomagnetism and Paleomagnetism Springer, p. 11CrossRefGoogle Scholar
Browning, M. K. 2008, ApJ 676, 1262CrossRefGoogle Scholar
Browning, M. K., Brun, A. S., & Toomre, J. 2004, ApJ 601, 512CrossRefGoogle Scholar
Browning, M. K., Miesch, M. S., & Brun, A. S. 2006, ApJ 648, 157CrossRefGoogle Scholar
Brun, A. S., Browning, M. K., & Toomre, J. 2005, ApJ 629, 461CrossRefGoogle Scholar
Christensen, U. R. & Aubert, J. 2006, Geophys. J. International 166, 97CrossRefGoogle Scholar
Christensen, U. R., Schmitt., D., & Rempel., R. 2009, Space Sci. Rev., in pressGoogle Scholar
Christensen, U. R. & Tilgner, A. 2004, Nature 429, 169CrossRefGoogle Scholar
Geurts, B. J., Kuczaj, A. K., & Titi, E. S. 2008, J. Phys. A: Math. Theor. 41, 344008CrossRefGoogle Scholar
Glatzmaier, G. A. 1985, ApJ 291, 300CrossRefGoogle Scholar
Glatzmaier, G. A. & Roberts, P. H. 1996, Physica D 97, 81CrossRefGoogle Scholar
Hide, R. 1966, Phil. Trans. R. Soc. Lond. A 259, 615Google Scholar
Holme, R. 2007, in: Olson, P. (ed.), Treatise on Geophysics (Elsevier), vol. 8, p. 107CrossRefGoogle Scholar
Hughes, D. W., Rosner, R., & Weiss, N. O. 2007, The Solar Tachocline (Cambridge UK, University Press.)CrossRefGoogle Scholar
Jones, C. A. 2007, in: Olson, P. (ed.), Treatise on Geophysics (Elsevier), vol. 8, p. 131CrossRefGoogle Scholar
Kageyama, A., Miyagoshi, T., & Sato, T. 2008 Nature 454, 1106CrossRefGoogle Scholar
Kono, M. & Tanaka, H. 1995, in: Yukutake, T. (ed.), The Earth's central Part; its Structure and Dynamics, (Terrapub.), p. 75Google Scholar
Libbrecht, K. G. 1989, ApJ 336, 1092CrossRefGoogle Scholar
Loper, D. E. 1978, J. Geophys. Res. 83, 5961CrossRefGoogle Scholar
Loper, D. E. 2007, in: Olson, P. (ed.), Treatise on Geophysics (Elsevier), vol. 8, p. 187CrossRefGoogle Scholar
Matsushima, M. 2001, Phys. Earth planet. Interiors 128, 137CrossRefGoogle Scholar
Matsushima, M. 2004, Earth Planets Space 56, 599CrossRefGoogle Scholar
Matsushima, M. 2005, Phys. Earth planet. Interiors 159, 74CrossRefGoogle Scholar
Matsushima, M.Nakajima, T., & Roberts, P. H 1999, Earth Planets Space 51, 277CrossRefGoogle Scholar
Meneveau, C. & Katz, J. 2000, Ann. Rev. Fluid Mech. 32, 1CrossRefGoogle Scholar
Proudman, J. 1916, Proc. R. Soc. Lond. A 92, 408Google Scholar
Rempel, M. 2005, ApJ 622, 1320CrossRefGoogle Scholar
Rempel, M. 2006, ApJ 647, 662CrossRefGoogle Scholar
Roberts, P. H., Jones, C. A., & Calderwood, A. R. 2003, in: Jones, C. A., Soward, A. M. & Zhang, K. (eds.), Earth's Core and Lower Mantle, The Fluid Mechanics of Astrophysics and Geophysics (Taylor & Francis), vol. 11, p. 100Google Scholar
Roberts, P. H. & Kono, M. 2007, Earth Planets Space 59, 661Google Scholar
Roberts, P. H., Yu, Z. J., & Russell, C. T. 2007, Geophys. astrophys. Fluid Dynam. 101, 11CrossRefGoogle Scholar
Rüdiger, G. 1989 Differential Rotation and Stellar Convection. Sun and Solar Type Stars, The Fluid Mechanics of Astrophysics and Geophysics (Gordon & Breach), vol. 5CrossRefGoogle Scholar
Rüdiger, G. & Hollerbach, R. 2004, The Magnetic Universe. Geophysical and Astrophysical Dynamo Theory. (Wiley VCH)CrossRefGoogle Scholar
St Pierre, M. G. 1996, Geophys. astrophys. Fluid Dynam. 83, 293CrossRefGoogle Scholar
Taylor, G. I. 1923, Proc. R. Soc. Lond. A 102, 180Google Scholar
Tobias, S. M. & Cattaneo, F. 2008, J. Fluid Mech. 601, 101CrossRefGoogle Scholar
Zatman, S. & Bloxham, J. 1997, Nature 338, 760CrossRefGoogle Scholar