Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T16:15:47.080Z Has data issue: false hasContentIssue false

The physics of disk winds, jets, and X-ray variability in GRS 1915+105

Published online by Cambridge University Press:  24 February 2011

Joseph Neilsen
Affiliation:
Harvard University Department of Astronomy, Cambridge, MA 02138, USA Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
Julia C. Lee
Affiliation:
Harvard University Department of Astronomy, Cambridge, MA 02138, USA Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
Ron Remillard
Affiliation:
MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present new insights about accretion and ejection physics based on joint RXTE/Chandra HETGS studies of rapid X-ray variability in GRS 1915+105. For the first time, with fast phase-resolved spectroscopy of the ρ state, we are able to show that changes in the broadband X-ray spectrum (RXTE) on timescales of seconds are associated with measurable changes in absorption lines (Chandra HETGS) from the accretion disk wind. Additionally, we make a direct detection of material evaporating from the radiation-pressure-dominated inner disk. Our X-ray data thus reveal the black hole as it ejects a portion of the inner accretion flow and then drives a wind from the outer disk, all in a bizarre cycle that lasts fewer than 60 seconds but can repeat for weeks. We find that the accretion disk wind may be sufficiently massive to play an active role in GRS 1915+105, not only in quenching the jet on long timescales, but also in possibly producing or facilitating transitions between classes of X-ray variability.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Belloni, T., Mendez, M., King, A. R., van der Klis, M., & van Paradijs, J. 1997, ApJ Lett., 479, L185CrossRefGoogle Scholar
Belloni, T., Klein-Wolt, M., Mendez, M., van der Klis, M., & van Paradijs, J. 2000, A&A, 355, 271Google Scholar
Castro-Tirado, A. J., Brandt, S., & Lund, S. 1992, IAU Circ. 5590Google Scholar
Fender, R. P. & Belloni, T. 2004, ARAA, 42, 317CrossRefGoogle Scholar
Dhawan, V., Mirabel, I. F., & Rodriguez, L. F. 2000, ApJ, 543, 373CrossRefGoogle Scholar
Fukue, J. 2004, PASJ, 56, 569CrossRefGoogle Scholar
Hannikainen, D. et al. 2005, A&A, 435, 995Google Scholar
Janiuk, A. & Czerny, B. 2005, MNRAS, 356, 205CrossRefGoogle Scholar
Lee, J. C., Reynolds, C. S., Remillard, R. A., Schulz, N. S., Blackman, E. G., & Fabian, A. C. 2002, ApJ, 567, 1102CrossRefGoogle Scholar
Lin, D., Remillard, R. A., & Homan, J. 2009, ApJ, 696, 1257CrossRefGoogle Scholar
Lightman, A. & Eardley, D. M. 1974, ApJ Lett., 187, L1CrossRefGoogle Scholar
Luketic, S., Proga, D., Kallman, T. R., Raymond, J. C., & Miller, J. M. 2010, ApJ, 719, 515CrossRefGoogle Scholar
Klein-Wolt, M., et al. 2002, MNRAS, 331, 745CrossRefGoogle Scholar
Miller, J. M., Raymond, J., Reynolds, C. S., Fabian, A. C., Kallman, T. R., & Homan, J. 2008, ApJ, 680, 1359CrossRefGoogle Scholar
Mirabel, I. F. et al. 1998, A&A, 330, L9Google Scholar
Neilsen, J. & Lee, J. C. 2009, Nature, 458, 481CrossRefGoogle Scholar
Neilsen, J., Lee, J. C., & Remillard, R. A. 2010a, ApJ Lett., submittedGoogle Scholar
Neilsen, J., Remillard, R. A., & Lee, J. C. 2010b, ApJ, submittedGoogle Scholar
Shields, G. A., McKee, C. F., Lin, D. N. C., & Begelman, M. C. 1986, ApJ, 306, 90CrossRefGoogle Scholar
Taam, R. E., Chen, X., & Swank, J. H. 1997, ApJ, 485, L83CrossRefGoogle Scholar
Tagger, M., Varniere, P., Rodriguez, J., & Pellat, R. 2004, ApJ, 607, 410CrossRefGoogle Scholar