Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:07:50.503Z Has data issue: false hasContentIssue false

Phase-resolved Spectroscopy and Photometry of the Eclipsing Polar UZ Fornacis

Published online by Cambridge University Press:  29 August 2019

Z. N. Khangale
Affiliation:
South African Astronomical Observatory, Cape Town, South Africa email: [email protected] Department of Astronomy, University of Cape Town, Cape Town, South Africa
S. B. Potter
Affiliation:
South African Astronomical Observatory, Cape Town, South Africa email: [email protected]
P. A. Woudt
Affiliation:
Department of Astronomy, University of Cape Town, Cape Town, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The blue continuum of the eclipsing polar UZ For is dominated by single- or double-peaked emission from He ii, He i and the Balmer lines. The red spectrum shows weak emission from the Na i doublet at λ 8183 and 8194 Å and strong emission from the Ca ii lines at λ 8498 and 8542 Å. Doppler tomography of the strongest emission features reveals the presence of emission from the irradiated face of the secondary star, the threading region, and the ballistic and magnetically confined accretion stream. We have obtained 28 new eclipse times of UZ For during 2011–2016 as part of our eclipse timing follow-up programme to test the two-planet model proposed to explain variations in the eclipse times of UZ For.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

Footnotes

References

Applegate, J. H. 1992, ApJ, 385, 62110.1086/170967CrossRefGoogle Scholar
Beuermann, K., et al. 2010, A&A, 521, L60Google Scholar
Buckley, D. A. H., Burgh, E. B., Cottrell, P. L., Nordsieck, K. H., O’Donoghue, D., & Williams, T. B. 2006, in: McLean, I. S. & Iye, M. (eds.), Proc. SPIE, 6269Google Scholar
Burgh, E. B., Nordsieck, K. H., Kobulnicky, H. A., Williams, T. B., O’Donoghue, D., Smith, M. P., & Percival, J. W. 2003, in: Iye, M. & Moorwood, A. F. M. (eds.), Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (Proc. SPIE), 4841, 146310.1117/12.460312CrossRefGoogle Scholar
Coppejans, R., et al. 2013, PASP, 125, 97610.1086/672156CrossRefGoogle Scholar
Giommi, P., Angelini, L., Osborne, J., Stella, L., Tagliaferri, G., Beuermann, K., & Thomas, H.-C. 1987, IAU Circ., 4486, 1Google Scholar
Kotze, E. J., Potter, S. B., & McBride, V. A. 2015, A&A, 579, A77Google Scholar
Potter, S. B., et al. 2010, MNRAS, 402, 116110.1111/j.1365-2966.2009.15944.xCrossRefGoogle Scholar
Potter, S. B., et al. 2011, MNRAS, 416, 220210.1111/j.1365-2966.2011.19198.xCrossRefGoogle Scholar
Qian, S.-B., et al. 2011, MNRAS, 414, L1610.1111/j.1745-3933.2011.01045.xCrossRefGoogle Scholar
Supplementary material: PDF

Khangale et al. supplementary material

Khangale et al. supplementary material

Download Khangale et al. supplementary material(PDF)
PDF 847.2 KB