Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T10:57:56.783Z Has data issue: false hasContentIssue false

Outflows from Accretion Disks around Compact Objects

Published online by Cambridge University Press:  21 February 2013

Cheng-Liang Jiao
Affiliation:
Radio Astronomy Research Center, Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon, Republic of Korea email: [email protected]
Xue-Bing Wu
Affiliation:
Dept. of Astronomy, Peking University, Beijing 100871, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We solve the set of hydrodynamic equations for accretion disks in the spherical coordinates (rθφ) to obtain the explicit structure along the θ direction. The results display thinner, quasi-Keplerian disks for Shakura-Sunyaev Disks (SSDs) and thicker, sub-Keplerian disks for Advection Dominated Accretion Flows (ADAFs) and slim disks, which are consistent with previous popular analytical models, while an inflow region and an outflow region always exist, which supports the results of some recent numerical simulation works. Our results indicate that the outflows should be common in various accretion disks and stronger in slim disks and ADAFs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Abramowicz, M. A., Chen, X., Kato, S., Lasota, J.-P., & Regev, O. 1995, ApJ, 438, L37CrossRefGoogle Scholar
Blandford, R. D. & Begelman, M. C. 1999, MNRAS, 303, L1Google Scholar
Blandford, R. D. & Begelman, M. C. 2004, MNRAS, 349, 68Google Scholar
Chartas, G., Brandt, W. N., & Gallagher, S. C. 2003, ApJ, 595, 85Google Scholar
Igumenshchev, I. V. & Abramowicz, M. A. 2000, ApJS, 130, 463Google Scholar
Jiao, C.-L. & Wu, X.-B. 2011, ApJ, 733, 112Google Scholar
Loeb, A., Narayan, R., & Raymond, J. C. 2001, ApJ, 547, L151Google Scholar
Marrone, D. P., Moran, J. M., Zhao, J.-H., & Rao, R. 2006, ApJ, 640, 308Google Scholar
Narayan, R., Sadowski, A., Penna, R. F., & Kulkarni, A. K. 2012, arXiv:1206.1213Google Scholar
Narayan, R. & Yi, I. 1995, ApJ, 444, 231Google Scholar
Ohsuga, K. & Mineshige, S. 2007, ApJ, 670, 1283Google Scholar
Ohsuga, K., Mineshige, S., Mori, M., & Kato, Y. 2009, PASJ, 61, L7Google Scholar
Ohsuga, K., Mori, M., Nakamoto, T., & Mineshige, S. 2005, ApJ, 628, 368Google Scholar
Okuda, T., Teresi, V., Toscano, E., & Molteni, D. 2005, MNRAS, 357, 295Google Scholar
Sądowski, A., Abramowicz, M., Bursa, M., et al. 2011, A&A, 527, A17Google Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337Google Scholar
Stone, J. M., Pringle, J. E., & Begelman, M. C. 1999, MNRAS, 310, 1002Google Scholar
Xie, F.-G. & Yuan, F. 2008, ApJ, 681, 499CrossRefGoogle Scholar
Xu, G. & Chen, X. 1997, ApJ, 489, L29Google Scholar
Xue, L. & Wang, J. 2005, ApJ, 623, 372Google Scholar
Yuan, F., Bu, D., & Wu, M. 2012, arXiv:1206.4173Google Scholar