No CrossRef data available.
Article contents
Origin of Ultra-High Energy Cosmic Rays: Nuclear Composition of Gamma-Ray Burst Jets
Published online by Cambridge University Press: 05 September 2012
Abstract
Ultra-high energy cosmic rays (UHECRs) are the most energetic particles flying from space and their source is not clarified yet. Recently, the Pierre Auger Observatory (PAO) suggests that UHECRs involve heavy nuclei. The PAO results require that a considerable fraction of metal nuclei must exist in the accelerating site, which can be realized only in the stellar interior. This puts strong constraints on the origin of UHECRs. In order to definitize the constraints from PAO results, we investigate the fraction of metal nuclei in a relativistic jet in gamma-ray burst associated with core-collapse supernova. If the jet is initially dominated by radiation field, quasi-statistical equilibrium (QSE) is established and heavy nuclei are dissociated to light particles such as 4He during the acceleration and expansion. On the other hand, if the jet is mainly accelerated by magnetic field heavy or intermediate mass nuclei can survive. The criterion to contain the metal nuclei is that the temperature at the launch site is below 4.5 × 109K. Therefore, if the composition of UHECRs is dominated by metal nuclei, a GRB with the magnetized jet is the most plausible candidate of the accelerating site.
- Type
- Poster Papers
- Information
- Proceedings of the International Astronomical Union , Volume 7 , Symposium S279: Death of Massive Stars: Supernovae and Gamma-Ray Bursts , April 2011 , pp. 389 - 390
- Copyright
- Copyright © International Astronomical Union 2012