Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:27:27.848Z Has data issue: false hasContentIssue false

Origin of the Galactic Halo: accretion vs. in situ formation

Published online by Cambridge University Press:  02 August 2018

Emanuele Spitoni
Affiliation:
Dipartimento di Fisica, Università di Trieste Via G. Tiepolo 11, 34131 Trieste, Italia email: [email protected]
Fiorenzo Vincenzo
Affiliation:
University of Hertfordshire, Hatfield, Hertfordshire, Hertfordshire, AL10 9AB, UK
Francesca Matteucci
Affiliation:
Dipartimento di Fisica, Università di Trieste Via G. Tiepolo 11, 34131 Trieste, Italia email: [email protected] INFN, Sezione di Trieste, via A. Valerio 2, 34127 Trieste, Italy
Donatella Romano
Affiliation:
INAF, Area della Ricerca - via Piero Gobetti, 101 - 40129 Bologna - ITALY
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We test the hypothesis that the classical and ultra-faint dwarf spheroidal satellites of the our Galaxy have been the building blocks of the Galactic halo by comparing their [O/Fe] and [Ba/Fe] vs. [Fe/H] patterns with the ones observed in Galactic halo stars. The [O/Fe] ratio deviates substantially from the observed abundance ratios in the Galactic halo stars for [Fe/H] > -2 dex, while they overlap for lower metallicities. On the other hand, for the neutron capture elements, the discrepancy is extended at all the metallicities, suggesting that the majority of stars in the halo are likely to have been formed in situ. We present the results for a model considering the effects of an enriched gas stripped from dwarf satellites on the chemical evolution of the Galactic halo. We find that the resulting chemical abundances of the halo stars depend on the adopted infall time-scale, and the presence of a threshold in the gas for star formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Akerman, C. J., Carigi, L., Nissen, P. E., Pettini, M., & Asplund, M., 2004, A&A, 414, 93Google Scholar
Brusadin, G., Matteucci, F., & Romano, D., 2013, A&A, 554, A135Google Scholar
Cayrel, R., Depagne, E., Spite, M., et al., 2004, A&A, 416, 1117Google Scholar
Cescutti, G., François, P., Matteucci, F., Cayrel, R., & Spite, M., 2006, A&A, 448, 557Google Scholar
Chiappini, C., Matteucci, F., & Gratton R., 1997, ApJ, 477, 765Google Scholar
Fiorentino, G., Bono, G., Monelli, M., et al., 2015, ApJL, 798, L12Google Scholar
Frebel, A., 2010, Astron. Nachr., 331, 474Google Scholar
Gratton, R. G., Carretta, E., Desidera, S., Lucatello, et al., 2003, A&A, 406, 131Google Scholar
Grebel, E. K., 2005, IAU Colloq. 198: Near-fields cosmology with dwarf elliptical galaxies, 1Google Scholar
Romano, D., Karakas, A. I., Tosi, M., & Matteucci, F., 2010, A&A, 522, A32Google Scholar
Spitoni, E., 2015, MNRAS, 451, 1090Google Scholar
Spitoni, E., Vincenzo, F., Matteucci, F., & Romano, D., 2016, MNRAS, 458, 2541Google Scholar
York, D. G., Adelman, J., Anderson, J. E. Jr, et al., 2000, AJ, 120, 1579Google Scholar