Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T00:34:18.779Z Has data issue: false hasContentIssue false

The origin of magnetic fields in hot stars

Published online by Cambridge University Press:  24 July 2015

Coralie Neiner
Affiliation:
LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France email: [email protected]
Stéphane Mathis
Affiliation:
LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France email: [email protected] Laboratoire AIM Paris-Saclay, CEA/DSM - CNRS - Université Paris Diderot, IRFU/SAp Centre de Saclay, 91191 Gif-sur-Yvette, France
Evelyne Alecian
Affiliation:
LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France email: [email protected] UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France
Constance Emeriau
Affiliation:
Laboratoire AIM Paris-Saclay, CEA/DSM - CNRS - Université Paris Diderot, IRFU/SAp Centre de Saclay, 91191 Gif-sur-Yvette, France
Jason Grunhut
Affiliation:
ESO, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of stable mainly dipolar magnetic fields at the surface of ~7% of single hot stars indicate that these fields are of fossil origin, i.e. they descend from the seed field in the molecular clouds from which the stars were formed. The recent results confirm this theory. First, theoretical work and numerical simulations confirm that the properties of the observed fields correspond to those expected from fossil fields. They also showed that rapid rotation does not modify the surface dipolar magnetic configurations, but hinders the stability of fossil fields. This explains the lack of correlation between the magnetic field properties and stellar properties in massive stars. It may also explain the lack of detections of magnetic fields in Be stars, which rotate close to their break-up velocity. In addition, observations by the BinaMIcS collaboration of hot stars in binary systems show that the fraction of those hosting detectable magnetic fields is much smaller than for single hot stars. This could be related to results obtained in simulations of massive star formation, which show that the stronger the magnetic field in the original molecular cloud, the more difficult it is to fragment massive cores to form several stars. Therefore, more and more arguments support the fossil field theory.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Alecian, E., Neiner, C., Wade, G. A., et al. 2015, in: New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry, Vol. 307 of IAU Symposium, p. 330Google Scholar
Alecian, E., Wade, G. A., Catala, C., et al. 2013, MNRAS 429, 1001 Google Scholar
Arlt, R. & Rüdiger, G. 2011, MNRAS 412, 107 Google Scholar
Aurière, M., Wade, G. A., Silvester, J., et al. 2007, A&A 475, 1053 Google Scholar
Braithwaite, J. 2006, A&A 449, 451 Google Scholar
Braithwaite, J. 2009, MNRAS 397, 763 CrossRefGoogle Scholar
Braithwaite, J. & Cantiello, M. 2013, MNRAS 428, 2789 Google Scholar
Braithwaite, J. & Nordlund, Å. 2006, A&A 450, 1077 Google Scholar
Braithwaite, J. & Spruit, H. C. 2004, Nature 431, 819 Google Scholar
Brun, A. S. 2007, AN 328, 1137 Google Scholar
Brun, A. S., Browning, M. K., & Toomre, J. 2005, ApJ 629, 461 Google Scholar
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ 614, 1073 Google Scholar
Cantiello, M. & Braithwaite, J. 2011, A&A 534, A140 Google Scholar
Charbonneau, P. 2010, Living Reviews in Solar Physics 7, 3 Google Scholar
Charbonneau, P. & MacGregor, K. B. 2001, ApJ 559, 1094 Google Scholar
Commerçon, B., Hennebelle, P., & Henning, T. 2011, Ap. Lett. 742, L9 Google Scholar
Duez, V., Braithwaite, J., & Mathis, S. 2010, Ap. Lett. 724, L34 Google Scholar
Duez, V. & Mathis, S. 2010, A&A 517, A58 Google Scholar
Emeriau, C. & Mathis, S. 2015, in: New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry, Vol. 307 of IAU Symposium, p. 373Google Scholar
Featherstone, N. A., Browning, M. K., Brun, A. S., & Toomre, J. 2009, ApJ 705, 1000 Google Scholar
Grunhut, J. H., Rivinius, T., Wade, G. A., et al. 2012, MNRAS 419, 1610 CrossRefGoogle Scholar
Jouve, L., Gastine, T., & Lignières, F. 2015, A&A 575, A106 Google Scholar
Lignières, F., Petit, P., Aurière, M., Wade, G. A., & Böhm, T. 2014, in: Magnetic Fields throughout Stellar Evolution, Vol. 302 of IAU Symposium, p. 338Google Scholar
Lignières, F., Petit, P., Böhm, T., & Aurière, M. 2009, Astron. Lett. 500, L41 Google Scholar
MacGregor, K. B. & Cassinelli, J. P. 2003, ApJ 586, 480 Google Scholar
Markey, P. & Tayler, R. J. 1973, MNRAS 163, 77 Google Scholar
Matt, S. P., MacGregor, K. B., Pinsonneault, M. H., & Greene, T. P. 2012, Ap. Lett. 754, L26 Google Scholar
Mestel, L. 1999, Stellar magnetism, Oxford: Clarendon; International series of monographs on physicsGoogle Scholar
Neiner, C., Alecian, E., & Mathis, S. 2011, in: Alecian, G., Belkacem, K., Samadi, R., & Valls-Gabaud, D. (eds.), SF2A-2011: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, p. 509Google Scholar
Neiner, C. & Alecian, E., the BinaMIcS collaboration 2013, in: Pavlovski, K., Tkachenko, A., & Torres, G. (eds.), Setting a New Standard in the Analysis of Binary Stars, Vol. 64 of EAS Publications Series, p. 75Google Scholar
Oksala, M. E., Wade, G. A., Marcolino, W. L. F., et al. 2010, MNRAS 405, L51 Google Scholar
Petit, P., Lignières, F., Aurière, M., et al. 2011, Astron. Lett. 532, L13 Google Scholar
Petit, P., Lignières, F., Wade, G. A., et al. 2010, A&A 523, A41 Google Scholar
Power, J. 2007, Master's thesis, Queen's University, CanadaGoogle Scholar
Réville, V., Brun, A. S., Matt, S. P., Strugarek, A., & Pinto, R. F. 2015, ApJ 798, 116 Google Scholar
Rüdiger, G., Kitchatinov, L. L., & Elstner, D. 2012, MNRAS 425, 2267 Google Scholar
Spruit, H. C. 2002, A&A 381, 923 Google Scholar
Tayler, R. J. 1973, MNRAS 161, 365 Google Scholar
Wade, G. A., Grunhut, J., Alecian, E., et al. 2014a, in: Magnetic Fields throughout Stellar Evolution, Vol. 302 of IAU Symposium, p. 265Google Scholar
Wade, G. A., Petit, V., Grunhut, J., & Neiner, C. 2014b, ArXiv e-prints 1411.6165 Google Scholar
Wolff, S. C. 1968, PASP 80, 281 Google Scholar
Zahn, J.-P., Brun, A. S., & Mathis, S. 2007, A&A 474, 145 Google Scholar