Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T07:54:49.421Z Has data issue: false hasContentIssue false

Optical selection of quasars: SDSS and LSST

Published online by Cambridge University Press:  25 July 2014

Željko Ivezić
Affiliation:
Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580, USA email: [email protected]
W. Niel Brandt
Affiliation:
Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA email: [email protected]
Xiaohui Fan
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA email: [email protected]
Chelsea L. MacLeod
Affiliation:
Department of Physics, U. S. Naval Academy, 022 Chauvenet Hall, Annapolis, MD 21402, USA email: [email protected]
Gordon T. Richards
Affiliation:
Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA email: [email protected]
Peter Yoachim
Affiliation:
Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the last decade, quasar sample sizes have increased from several thousand to several hundred thousand, thanks mostly to SDSS imaging and spectroscopic surveys. LSST, the next-generation optical imaging survey, will provide hundreds of detections per object for a sample of more than ten million quasars with redshifts of up to about seven. We briefly review optical quasar selection techniques, with emphasis on methods based on colors, variability properties and astrometric behavior.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Abell, P. A., Allison, J., Anderson, S. F., et al. 2009, ArXiv:0912.0201Google Scholar
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559CrossRefGoogle Scholar
Bovy, J., Myers, A. D., Hennawi, J., et al. 2012, ApJ, 749, 41Google Scholar
Butler, N. R. & Bloom, J. S. 2011 AJ, 141, 93Google Scholar
Flaugher, B. 2008, In A Decade of Dark Energy: Spring Symposium, Proceedings of the conferences held May 5-8, 2008 in Baltimore, Maryland. (USA). Ed. by Pirzkal, N. & Ferguson, H..Google Scholar
Hao, L., Strauss, M. A., Fan, X., et al. 2005, AJ, 129, 1795Google Scholar
Hawkins, M. R. S. & Veron, P. 1995, MNRAS, 275, 1102Google Scholar
Ivezić, Ž., Lupton, R. H., Johnston, D. E., et al. 2003, ArXiv:astro-ph/0310566Google Scholar
Ivezić, Ž., Lupton, R. H., Jurić, M., et al. 2004, ArXiv:astro-ph/0404487Google Scholar
Ivezić, Ž., Tyson, J. A., Acosta, E., et al. 2008, ArXiv:0805.2366Google Scholar
Ivezić, Ž., Beers, T. C. & Jurić, M. 2012, ARAA, 50, 251Google Scholar
Kaczmarczik, M. C., Richards, G. T., Mehta, S. S., & Schlegel, D. J. 2009, AJ, 138, 19Google Scholar
Kaiser, N., Burgett, W., Chambers, K., et al. 2010, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7733Google Scholar
Kawaguchi, T., Mineshige, S., Umemura, M., & Turner, E. L. 1998, ApJ, 504, 671CrossRefGoogle Scholar
Kelly, B. C., Bechtold, J. & Siemiginowska, A. 2009, ApJ, 698, 895Google Scholar
Kimball, A., Ivezić, Ž., Wiita, P. J., & Schneider, D. P. 2011, AJ, 141, 182Google Scholar
Kozłowski, S., Kochanek, C. S., Udalski, A., et al. 2010, ApJ, 708, 927Google Scholar
MacLeod, C. L., Ivezić, Ž., Kochanek, C. S., et al. 2010, ApJ, 721, 1014Google Scholar
MacLeod, C. L., Brooks, K., Ivezić, Ž., et al. 2011, ApJ, 728, 26CrossRefGoogle Scholar
MacLeod, C. L., Ivezić, Ž., Sesar, B., et al. 2012, ApJ, 753, 106CrossRefGoogle Scholar
Palanque-Delabrouille, N., Yéche, Ch., Myers, A. D., et al. 2011, A&A, 530, 122Google Scholar
Palanque-Delabrouille, N., Magneville, Ch., Yéche, Ch., et al. 2013, A&A, 551, 29Google Scholar
Pâris, I., Petitjean, P., Aubourg, É., et al. 2012, A&A, 548, 66Google Scholar
Richards, G. T., Fan, X., Schneider, D. P., et al. 2001, AJ 121 2308 (see also arXiv:1311.4870)Google Scholar
Richards, G. T., Fan, X., Newberg, H. J., et al. 2002, AJ, 123, 2945Google Scholar
Richards, G. T., Strauss, M. A., Fan, X., et al. 2006, AJ, 131, 2766Google Scholar
Richards, G. T., Myers, A. D., Gray, A. G., et al. 2009, ApJS, 180, 67Google Scholar
Ross, N. P., Myers, A. D., Sheldon, E. S., et al. 2012 ApJS, 199, 3CrossRefGoogle Scholar
Sesar, B., Ivezić, Ž., Lupton, R. H., et al. 2007, AJ, 134, 2236CrossRefGoogle Scholar
Schmidt, K. B., Marshall, P. J., Rix, H.-W., et al. 2010, ApJ, 714, 1194Google Scholar
Schneider, D. P., Richards, G. T., Hall, P. B., et al. 2010, AJ, 139, 2360Google Scholar
Strauss, M. A., Weinberg, D. H., Lupton, R. H., et al. 2002, AJ, 124, 1810Google Scholar
Zakamska, N. L., Strauss, M. A., Krolik, J. H., et al. 2003, AJ, 126, 2125Google Scholar
Zakamska, N. L., Strauss, M. A., Heckman, T. M., et al. 2004, AJ, 128, 1002Google Scholar
Zu, Y., Kochanek, C. S., Kozłowski, S., & Udalski, A. 2013, ApJ, 765, 106Google Scholar