Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T11:37:15.586Z Has data issue: false hasContentIssue false

Optical SED models of galaxy mergers

Published online by Cambridge University Press:  17 August 2012

Gregory F. Snyder
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden ST, Cambridge, MA 02138 email: [email protected]
T. J. Cox
Affiliation:
Carnegie Observatories, Pasadena, CA
Christopher C. Hayward
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden ST, Cambridge, MA 02138 email: [email protected]
Lars Hernquist
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden ST, Cambridge, MA 02138 email: [email protected]
Patrik Jonsson
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden ST, Cambridge, MA 02138 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I discuss recent work in which we construct models of poststarburst galaxies by combining fully three-dimensional hydrodynamic simulations of galaxy mergers with radiative transfer calculations of dust attenuation. The poststarburst signatures can occur shortly after a bright starburst phase in gas-rich mergers, and thus offer a unique opportunity to study the formation of bulges and the effects of feedback. Several additional applications of spatially-resolved spectroscopic models of interacting galaxies include multi-wavelength studies of AGN/starburst diagnostics, mock integral field unit data to interpret the evolution of ULIRGs, and the ‘Green Valley’.

Optical spectra of simulated major gas-rich galaxy mergers can be found at http://www.cfa.harvard.edu/~gsnyder

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Dressler, A. & Gunn, J. E. 1983, ApJ, 270, 7Google Scholar
Cox, T. J., Dutta, S. N., Di Matteo, T., et al. 2006, ApJ, 650, 791CrossRefGoogle Scholar
Hopkins, P.F., Cox, T.J., Younger, J.D., & Hernquist, L. 2009b, ApJ, 691, 1168Google Scholar
Jonsson, P. 2006, MNRAS, 372, 2CrossRefGoogle Scholar
Jonsson, P., Groves, B. A., & Cox, T. J. 2010, MNRAS, 403, 17Google Scholar
Lavery, R. J. & Henry, J. P. 1988, ApJ, 330, 596Google Scholar
Lotz, J. M., Jonsson, P., Cox, T. J., & Primack, J. R. 2008, MNRAS, 391, 1137Google Scholar
Robertson, B., Bullock, J. S., Cox, T. J., et al. 2006, ApJ, 645, 986CrossRefGoogle Scholar
Snyder, G. F., Cox, T. J., Hayward, C. C., Hernquist, L., & Jonsson, P. 2011, ApJ, 741, 77Google Scholar
Springel, V. & Hernquist, L. 2003, MNRAS, 339, 289CrossRefGoogle Scholar
Springel, V. 2005, MNRAS, 364, 1105CrossRefGoogle Scholar
Springel, V., Di Matteo, T., & Hernquist, L. 2005b, MNRAS, 361, 776CrossRefGoogle Scholar
Tremonti, C. A., Moustakas, J., & Diamond-Stanic, A. M. 2007, ApJL, 663, L77.CrossRefGoogle Scholar
Wild, V., Walcher, C. J., Johansson, P. H., et al. 2009, MNRAS, 395, 144CrossRefGoogle Scholar
Yang, Y., Zabludoff, A. I., Zaritsky, D., & Mihos, J. C. 2008, ApJ, 688, 945Google Scholar
Zabludoff, A. I., Zaritsky, D., Lin, H., et al. 1996, ApJ, 466, 104CrossRefGoogle Scholar