Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T19:09:51.487Z Has data issue: false hasContentIssue false

On the scaling relations of disk galaxies

Published online by Cambridge University Press:  26 February 2013

Riccardo Giovanelli*
Affiliation:
Department of Astronomy, Cornell University, Space Sciences Building, Ithaca, NY 14853, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The physical background of scaling laws of disk galaxies is reviewed. The match between analytically derived and observed scaling laws is briefly discussed. Accurate modeling of the fraction of baryons that end up populating a disk, and the conversion efficiency of those into stars, remains a challenging task for numerical simulations. The measurement of rotational velocity tends to be made with criteria of convenience rather than through rigorous definition. And yet, the Tully–Fisher and the disk size versus rotational velocity relations exhibit surprisingly small scatter. Practical recipes (and costs) to optimize the quality of template relations are considered.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Courteau, S., Dutton, A. A., van den Bosch, F. C., et al. 2007, ApJ, 671, 203CrossRefGoogle Scholar
Dale, D. A. & Giovaneli, R. 2000, in: Cosmic Flows Workshop (Courteau, S., & Willick, J., eds.), Astron. Soc. Pac. Conf. Ser., 201, p. 25Google Scholar
Giovanelli, R., Haynes, M. P., Freudling, W., et al. 1998, ApJ, 505, L91CrossRefGoogle Scholar
Giovanelli, R., Haynes, M. P., Kent, B. R., et al. 2005, AJ, 130, 2598Google Scholar
Governato, F., Willman, B., Mayer, L., et al. 2007, MNRAS, 374, 1479CrossRefGoogle Scholar
Haynes, M. P., Giovanelli, R., Martin, A. M., et al. 2011, AJ, 142, 170CrossRefGoogle Scholar
Huang, S., Haynes, M. P., Giovanelli, R., et al. 2012, ApJ, 756, 113Google Scholar
McGaugh, S. S. 2012, AJ, 143, 40CrossRefGoogle Scholar
Mo, H. J., Mao, S., & White, S. D. M. 1998, MNRAS, 319, 336Google Scholar
Papastergis, E., Cattaneo, A., Huang, S., Giovanelli, R., & Haynes, M. P. 2012, ApJ, 759, 138Google Scholar
Piontek, F. & Steinmetz, M. 2011, MNRAS, 410, 2625Google Scholar
Reyes, R., Mandelbaum, R., Gunn, J. E., Nakajima, R., Seljak, U., & Hirata, C. M. 2012, MNRAS, 425, 2610Google Scholar
Roberts, M. S. 1969, AJ, 74, 859Google Scholar
Saintonge, A., & Spekkens, K. 2011 ApJ, 726, 77Google Scholar
Scannapieco, C., Wadepuhl, M., Parry, O.H., et al. 2012 MNRAS, 423, 1726Google Scholar
Seljak, U. 2002, MNRAS, 334, 797Google Scholar
Sorce, J. G., Tully, R. B., & Courtois, H. M. 2012, AJ, 144, 133Google Scholar
Steinmetz, M. & Navarro, J. F. 1999, ApJ, 513, 555Google Scholar
Tully, R. B. & Fisher, J. R. 1977, A&A, 54, 661Google Scholar