Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T12:42:40.899Z Has data issue: false hasContentIssue false

On the relativistic Lagrange-Laplace secular dynamics for extrasolar systems

Published online by Cambridge University Press:  05 January 2015

M. Sansottera
Affiliation:
Dipartimento di Matematica, Università degli Studi di Milano, 20133 — Milano, Italia email: [email protected]@[email protected]
L. Grassi
Affiliation:
Dipartimento di Matematica, Università degli Studi di Milano, 20133 — Milano, Italia email: [email protected]@[email protected]
A. Giorgilli
Affiliation:
Dipartimento di Matematica, Università degli Studi di Milano, 20133 — Milano, Italia email: [email protected]@[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the secular dynamics of extrasolar planetary systems by extending the Lagrange-Laplace theory to high order and by including the relativistic effects. We investigate the long-term evolution of the planetary eccentricities via normal form and we find an excellent agreement with direct numerical integrations. Finally we set up a simple analytic criterion that allows to evaluate the impact of the relativistic effects in the long-time evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Adams, F. C. & Laughlin, G., 2006, ApJ, 649, 992Google Scholar
Celletti, A. & Chierchia, L., 2007, Mem. Amer. Math. Soc., 187, 1Google Scholar
Giorgilli, A., Locatelli, U. & Sansottera, M., 2009, Celes. Mech. Dyn. Astr., 104, 159CrossRefGoogle Scholar
Giorgilli, A., Locatelli, U. & Sansottera, M., 2014, Celes. Mech. Dyn. Astr., 119, 397CrossRefGoogle Scholar
Giorgilli, A. & Sansottera, M., 2011, Workshop Series of the Asociacion Argentina de Astronomia, 3, 147.Google Scholar
Libert, A.-S. & Henrard, J., 2005, Celes. Mech. Dyn. Astr., 93, 187CrossRefGoogle Scholar
Libert, A.-S. & Henrard, J., 2006, Icarus, 183, 186Google Scholar
Libert, A.-S. & Sansottera, M., 2013, Celes. Mech. Dyn. Astr., 117, 149CrossRefGoogle Scholar
Locatelli, U. & Giorgilli, A., 2007, DCDS-B, 7, 377Google Scholar
Migaszewski, C. & Goździewski, K., 2008, MNRAS 3927 (1): 2Google Scholar
Robutel, P., 1995, Celes. Mech. Dyn. Astr., 62, 219CrossRefGoogle Scholar
Sansottera, M., Locatelli, U. & Giorgilli, A., 2013, Math. Comput. Simulat., 88, 1Google Scholar
Sansottera, M., Locatelli, U. & Giorgilli, A., 2011, Celes. Mech. Dyn. Astr., 111, 337Google Scholar