Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T20:54:11.375Z Has data issue: false hasContentIssue false

On the origin of the low-frequency QPO in GRS 1915+105 ρ state

Published online by Cambridge University Press:  20 March 2013

Shu-Ping Yan
Affiliation:
Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150, Science 1-Street, Urumqi, Xinjiang 830011, China email: [email protected], [email protected], [email protected] University of Chinese Academy of Sciences, 19A Yuquan road, Beijing 100049, China
Na Wang
Affiliation:
Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150, Science 1-Street, Urumqi, Xinjiang 830011, China email: [email protected], [email protected], [email protected]
Guo-Qiang Ding
Affiliation:
Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150, Science 1-Street, Urumqi, Xinjiang 830011, China email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We performed a phase-resolved timing analysis of GRS 1915+105 in its ρ state and identify detailed ρ cycle evolution of frequency, amplitude and coherence of the low-frequency quasi-periodic oscillation (LFQPO). We combined our timing results with the spectral study by Neilsen et al. (2011) to do an elaborate contrast analysis. The results are naturally explained by tying the LFQPO to the corona.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Belloni, T., Klein-Wolt, M., Méndez, M., et al. 2000, ApJ, 355, 271Google Scholar
Castro-Tirado, A. J., Brandt, S., & Lund, N. 1992, IAU Circ, 5590, 2Google Scholar
Chen, X., Swank, J. H., & Taam, R. E. 1997, ApJ, 477, L41CrossRefGoogle Scholar
Fender, R. P., Garrington, S. T., McKay, , et al. 1999, MNRAS, 304, 865Google Scholar
Greiner, J., Cuby, J. G., & McCaughrean, M. J. 2001, Nature, 414, 522CrossRefGoogle Scholar
Harlaftis, E. T. & Greiner, J. 2004, ApJ, 414, L13Google Scholar
Markwardt, C. B., Swank, J. H., & Taam, R. E. 1999, ApJ, 513, L37Google Scholar
McClintock, J. E., Shafee, R., Narayan, R., et al. 2006, ApJ, 652, 518Google Scholar
Mirabel, I. F. & Rodríguez, L. F. 1994, Nature, 371, 46CrossRefGoogle Scholar
Miyamoto, S., Kitamoto, S., Iga, S., Negoro, H., & Terada, K. 1992, ApJ, 391, L21CrossRefGoogle Scholar
Muno, M. P., Morgan, E. H., & Remillard, R. A. 1999, ApJ, 527, 321CrossRefGoogle Scholar
Muno, M. P., Remillard, R. A., Morgan, E. H., et al. 2001, ApJ, 556, 515Google Scholar
Neilsen, J., Remillard, R. A., & Lee, J. C. 2011, ApJ, 737, 69CrossRefGoogle Scholar
Qu, J. L., Lu, F. J., Lu, Y., et al. 2010, ApJ, 710, 836Google Scholar
Reig, P., Belloni, T., van der Klis, , et al. 2000, ApJ, 541, 883CrossRefGoogle Scholar
Rodriguez, J., Corbel, S., Hannikainen, , et al. 2004, ApJ, 615, 416CrossRefGoogle Scholar
Rodriguez, J., Durouchoux, P., Mirabel, , et al. 2002a, A&A, 386, 271Google Scholar
Rodriguez, J., Varnière, P., Tagger, M., & Durouchoux, P. 2002b, ApJ, 387, 487Google Scholar
Tomsick, J. A. & Kaaret, P. 2001, ApJ, 548, 401CrossRefGoogle Scholar
Trudolyubov, S. P., Churazov, E. M., & Gilfanov, M. R. 1999, Astronomy Letters, 25, 718Google Scholar
Vignarca, F., Migliari, S., Belloni, T., Psaltis, D., & van der Klis, M. 2003, ApJ, 397, 729Google Scholar
Yan, S.-P., et al. 2012, ApJ, 337, 137Google Scholar
Zdziarski, A. A., Gierliński, M., Rao, A. R., Vadawale, S. V., & Mikołajewska, J. 2005, MNRAS, 360, 825Google Scholar
Zhang, S. N., Cui, W., & Chen, W. 1997, ApJ, 482, L155Google Scholar