Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T07:33:19.636Z Has data issue: false hasContentIssue false

On the nature of the prominence - corona transition region

Published online by Cambridge University Press:  06 January 2014

Susanna Parenti
Affiliation:
Royal Observatory of Belgium - STCE, 3 Av. Circulaire, Brussels, Belgium email: [email protected]
Jean-Claude Vial
Affiliation:
Institut d'Astrophysique Spatiale, Université Paris Sud - CNRS, Orsay Cedex, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Due to the complexity of their environment, prominences properties are still a matter of controversy. Prominences cool and dense plasma is suspended in the hot corona by a magnetic structure poorly known. Their thermal insulation from the corona results in a thin geometrical interface called prominence-corona-transition-region (PCTR). Here we will review the main properties of such a region as derived primarily from observations. We will introduce the thermal structure properties, describe the fine structure together with the Doppler-shift and width properties of lines of the emitting plasma. We will introduce the proposed interpretations of such observations and the limits of our knowledge imposed by the present instrumentation. We will conclude with a perspective for the future observations of the PCTR.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Chiuderi Drago, F., Alissandrakis, C. E., Bastian, T., Bocchialini, K., & Harrison, R. A. 2001, Solar Phys. 199, 115.Google Scholar
Chiuderi Drago, F. & Landi, E. 2002, Solar Phys. 206, 315.Google Scholar
Cirigliano, D., Vial, J.-C., & Rovira, M. 2004, Solar Phys. 223, 95.Google Scholar
DeVore, C. R., Antiochos, S. K., & Aulanier, G. 2005, ApJ 629, 1122.Google Scholar
Gunár, S., Parenti, S., Anzer, U., Heinzel, P., & Vial, J.-C. 2011, A&A 535, A122.Google Scholar
Gunár, , et al. 2013, this volume.Google Scholar
Heinzel, P., Schmieder, B., Vial, J.-C., & Kotrč, P. 2001, A&A 370, 281.Google Scholar
Heinzel, P., Schmieder, B., & Tziotziou, K. 2001, ApJ 561, L223.Google Scholar
Heinzel, P. & Anzer, U. 2001, A&A 375, 1082.Google Scholar
Heinzel, P., Schmieder, B., Fárník, F., Schwartz, P., Labrosse, N., Kotrč, P., Anzer, U., Molodij, G., Berlicki, A., DeLuca, E. E., Golub, L., Watanabe, T., & Berger, T. 2008, ApJ 686, 1383.Google Scholar
Heinzel, P. & Anzer, U. 2012, A&A 539, A49.Google Scholar
Kucera, T. A., Gibson, S. E., Schmit, D. J., Landi, E., & Tripathi, D. 2012, ApJ 757, 73.Google Scholar
Labrosse, N., Heinzel, P., Vial, J.-C., Kucera, T., Parenti, S., Gunár, S., Schmieder, B., & Kilper, G. 2010, Space Sci. Revs 151, 243.Google Scholar
Labrosse, N., Gouttebroze, P., Heinzel, P., & Vial, J.-C. 2002, Solar Variability: From Core to Outer Frontiers, 506, 451.Google Scholar
Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J. E., & Berger, T. E. 2005, Solar Phys. 226, 239.Google Scholar
Lin, Y., Martin, S. F., Engvold, O., Rouppe van der Voort, L. H. M., & van Noort, M. 2008, Adv. Sp. Res. 42, 803.CrossRefGoogle Scholar
Luna, M., Karpen, J. T., & DeVore, C.R. 2012, ApJ 746, 30.CrossRefGoogle Scholar
Mariska, J. T., Doschek, G. A., & Feldman, U. 1979, ApJ 232, 929.Google Scholar
Paletou, F., Vial, J.-C., & Auer, L. H. 1993, A&A, 274, 571.Google Scholar
Parenti, S., Vial, J.-C., & Lemaire, P. 2008, Adv. Sp. Res., 41, 144.Google Scholar
Parenti, S. & Vial, J.-C. 2007, A&A, 469, 1109.Google Scholar
Parenti, S., Schmieder, B., Heinzel, P., & Golub, L. 2012, ApJ, 754, 66.Google Scholar
Parenti, S., Vial, J.-C., Schmieder, B., & Heinzel, P. 2013, in preparation.Google Scholar
Park, H., Chae, J., Song, D., Maurya, R. A., Yang, H., Park, Y.-D., Jang, B.-H., Nah, J., Cho, K.-S., Kim, Y.-H., Ahn, K., Cao, W., & Goode, P. R. 2013, Solar Phys. 72.Google Scholar
Pojoga, S. 1994, IAU Colloq. 144: Solar Coronal Structures, 357.Google Scholar
Ramelli, R., Stellmacher, G., Wiehr, E., & Bianda, M. 2012, Solar Phys. 281, 697.Google Scholar
Schmieder, B., Bommier, V., Kitai, R., Matsumoto, T., Ishii, T. T., Hagino, M., Li, H., & Golub, L. 2008, Solar Phys., 247, 321.Google Scholar
Schwartz, P., Schmieder, B., Heinzel, P., & Kotrč, P. 2012, Solar Phys. 281, 707.Google Scholar
Stellmacher, G., Wiehr, E., & Dammasch, I. E. 2003, Solar Phys. 217, 133.Google Scholar
Stellmacher, G. & Wiehr, E. 2008, A&A 489, 773.Google Scholar
Vial, J. C. 1982, ApJ 254, 780.Google Scholar
Vial, J.-C., Olivier, K., Philippon, A. A., Vourlidas, A., & Yurchyshyn, V. 2012, A&A 541, A108.Google Scholar
Wiik, J. E., Dere, K., & Schmieder, B. 1993, A&A 273, 267.Google Scholar
Wiik, J. E., Dammasch, I. E., Schmieder, B., & Wilhelm, K. 1999, Solar Phys. 187, 405.Google Scholar