Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T10:01:53.704Z Has data issue: false hasContentIssue false

On the merger origin of nuclear star clusters

Published online by Cambridge University Press:  21 March 2017

Athanasia Tsatsi
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: [email protected]
Alessandra Mastrobuono-Battisti
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nuclear Star Clusters (NSCs) are commonly observed in the centers of most galaxies, including our Milky Way (MW). While their study can reveal important information about the innermost regions of galaxies, the physical processes regulating their formation are still poorly understood. We explore a possible merger origin of NSCs by studying direct N-body simulations of globular clusters (GCs) that are initially randomly distributed in the outskirts and consecutively infall to the center of a MW-like nuclear bulge. We find that the NSC that forms through this process shows a significant amount of rotation, and both morphological and kinematic properties are comparable with observations of the MW NSC. We show that no fine-tuning of the orientation of the infalling GCs is necessary to result in a rotating NSC. This study shows the plausibility of the cluster infall scenario and can help towards setting better constraints to the formation history of NSCs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Antonini, F., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., & Merritt, D. 2012, ApJ, 750, 111 CrossRefGoogle Scholar
Böker, T., Laine, S., van der Marel, R. P., Sarzi, M., Rix, H.-W., Ho, L. C., & Shields, J. C. 2002, AJ, 123, 1389 CrossRefGoogle Scholar
Cappellari, M. & Copin, Y. 2003, MNRAS, 342, 345 CrossRefGoogle Scholar
Côté, P., Piatek, S., Ferrarese, L., Jordán, A., Merritt, D., Peng, E. W., Haşegan, M., Blakeslee, J. P., Mei, S., West, M. J., Milosavljević, M., & Tonry, J. L. 2006, ApJS, 165, 57 Google Scholar
Feldmeier, A., Neumayer, N., Seth, A., Schödel, R., Lützgendorf, N., de Zeeuw, P. T., Kissler-Patig, M., Nishiyama, S., & Walcher, C. J. 2014, A&A, 570, A2 Google Scholar
Genzel, R., Eisenhauer, F., & Gillessen, S. 2010, Rev. of Modern Phys., 82, 3121 Google Scholar
Krajnović, D., Cappellari, M., de Zeeuw, P. T., & Copin, Y. 2006, MNRAS, 366, 787 Google Scholar
Loose, H. H., Kruegel, E., & Tutukov, A. 1982, A&A, 105, 342 Google Scholar
Perets, H. B. & Mastrobuono-Battisti, A. 2014, ApJL, 784, L44 Google Scholar
Rossa, J., van der Marel, R. P., Böker, T., Gerssen, J., Ho, L. C., Rix, H.-W., Shields, J. C., & Walcher, C.-J. 2006, AJ, 132, 1074 Google Scholar
Schinnerer, E., Böker, T., Meier, D. S., & Calzetti, D. 2008, ApJL, 684, L21 Google Scholar
Schödel, R., Feldmeier, A., Kunneriath, D., Stolovy, S., Neumayer, N., Amaro-Seoane, P., & Nishiyama, S. 2014, A&A, 566, A47 Google Scholar
Tremaine, S. D., Ostriker, J. P., & Spitzer, L. Jr. 1975, ApJ, 196, 407 Google Scholar
Tsatsi, A., & Mastrobuono-Battisti, A., et al. 2016, in prep.Google Scholar
Walcher, C. J., van der Marel, R. P., McLaughlin, D., Rix, H.-W., Böker, T., Häring, N., Ho, L. C., Sarzi, M., & Shields, J. C. 2005, ApJ, 618, 237 Google Scholar