Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T00:35:47.016Z Has data issue: false hasContentIssue false

On Schmidt's Conjecture and Star Formation Scaling Laws

Published online by Cambridge University Press:  09 February 2015

Charles J. Lada*
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ever since the pioneering work of Schmidt a half-century ago there has been great interest in finding an appropriate empirical relation that would directly link some property of interstellar gas with the process of star formation within it. Schmidt conjectured that this might take the form of a power-law relation between the rate of star formation (SFR) and the surface density of interstellar gas. However recent observations suggest that a linear scaling relation between the total SFR and the amount of dense gas within molecular clouds appears to be the underlying physical relation that most directly connects star formation with interstellar gas from scales of individual GMCs to those encompassing entire galaxies both near and far. Although Schmidt relations are found to exist within local GMCs, there is no Schmidt relation observed between GMCs. The implications of these results for interpreting and understanding the Kennicutt-Schmidt scaling law for galaxies are discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bigiel, F., Leroy, A., Walter, F., et al. 2008, AJ, 136, 2846Google Scholar
Chomiuk, L. & Povich, M. S. 2011, AJ, 142, 197CrossRefGoogle Scholar
Evans, N. J. II, Heiderman, A., & Vutisalchavakul, N. 2014, ApJ, 782, 114Google Scholar
Faesi, C. M., Lada, C. J., Forbrich, J., Menten, K. M., & Bouy, H. 2014, ApJ, 789, 81CrossRefGoogle Scholar
Gao, Y. & Solomon, P. M. 2004, ApJ, 606, 271Google Scholar
Genzel, R., Tacconi, L. J., Gracia-Carpio, J., et al. 2010, MNRAS, 407, 2091Google Scholar
Gutermuth, R. A., Pipher, J. L., Megeath, S. T., et al. 2011, ApJ, 739, 84Google Scholar
Heiderman, A., Evans, N. J. II, Allen, L. E., Huard, T., & Heyer, M. 2010, ApJ, 723, 1019Google Scholar
Kennicutt, R. C. Jr. 1989, ApJ, 344, 685Google Scholar
Kennicutt, R. C. Jr. 1998, ARA&A, 36, 189.Google Scholar
Lada, C. J., Lombardi, M., & Alves, J. F. 2010, ApJ, 724, 687Google Scholar
Lada, C. J., Forbrich, J., Lombardi, M., & Alves, J. F. 2012, ApJ, 745, 190Google Scholar
Larson, R. B. 1981, MNRAS, 194, 809Google Scholar
Lombardi, M., Lada, C. J., & Alves, J. 2013, A&A, 559, A90Google Scholar
Lombardi, M., Bouy, H., Alves, J., & Lada, C. J. 2014, A&A, 566, A45Google Scholar
Schmidt, M. 1959, ApJ, 129, 243Google Scholar
Schruba, A., Leroy, A. K., Walter, F., et al. 2011, AJ, 142, 37Google Scholar
Shapley, A. E. 2011, ARA&A, 49, 525Google Scholar
Wu, J., Evans, N. J., Gao, Y., Solomon, P. M., Shirle, Y. L., & Vanden Bout, P. A. 2005, ApJ, 635, L173Google Scholar