Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T04:18:35.616Z Has data issue: false hasContentIssue false

The occurrence and the distribution of masses and radii of exoplanets

Published online by Cambridge University Press:  10 November 2011

Geoffrey W. Marcy
Affiliation:
Astronomy Dept., University of California, Berkeley Berkeley, CA, USA, 94720 email: [email protected] and [email protected]
Andrew W. Howard
Affiliation:
Astronomy Dept., University of California, Berkeley Berkeley, CA, USA, 94720 email: [email protected] and [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyze the statistics of Doppler-detected planets and Keplere-detected planet candidates of high integrity. We determine the number of planets per star as a function of planet mass, radius, and orbital period, and the occurrence of planets as a function of stellar mass. We consider only orbital periods less than 50 days around Solar-type (GK) stars, for which both Doppler and Kepler offer good completeness. We account for observational detection effects to determine the actual number of planets per star. From Doppler-detected planets discovered in a survey of 166 nearby G and K main sequence stars we find a planet occurrence of 15+5−4% for planets with M sin i = 3–30 ME and P < 50 d, as described in Howard et al. (2010). From Keplere, the planet occurrence is 0.130 ± 0.008, 0.023 ± 0.003, and 0.013 ± 0.002 planets per star for planets with radii 2–4, 4–8, and 8–32 RE, consistent with Doppler-detected planets. From Keplere, the number of planets per star as a function of planet radius is given by a power law, df/dlog R = kRRα with kR = 2.9+0.5−0.4, α = −1.92 ± 0.11, and R = RP/RE. Neither the Doppler-detected planets nor the Keplere-detected planets exhibit a “desert” at super-Earth and Neptune sizes for close-in orbits, as suggested by some planet population synthesis models. The distribution of planets with orbital period, P, shows a gentle increase in occurrence with orbital period in the range 2–50 d. The occurrence of small, 2–4 RE planets increases with decreasing stellar mass, with seven times more planets around low mass dwarfs (3600–4100 K) than around massive stars (6600–7100 K).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Adams, E. R., Seager, S., & Elkins-Tanton, L. 2008, ApJ, 673, 1160CrossRefGoogle Scholar
Alibert, Y., Mordasini, C., & Benz, W. 2011, A&A, 526, A63Google Scholar
Borucki, , Koch, , Basri, , Batalha, , Brown, , Caldwell, , Caldwell, , Christensen-Dalsgaard, , Cochran, , DeVore, , Dunham, , Dupree, , Gautier, , Geary, , Gilliland, , Gould, , Howell, , Jenkins, , Kondo, , Latham, , Marcy, , Meibom, , Kjeldsen, , Lissauer, , Monet, , Morrison, , Sasselov, , Tarter, , Boss, , Brownlee, , Owen, , Buzasi, , Charbonneau, , Doyle, , Fortney, , Ford, , Holman, , Seager, , Steffen, , Welsh, , Rowe, , Anderson, , Buchhave, , Ciardi, , Walkowicz, , Sherry, , Horch, , Isaacson, , Everett, , Fischer, , Torres, , Johnson, , Endl, , MacQueen, , Bryson, , Dotson, , Haas, , Kolodziejczak, , Van Cleve, , Chandrasekaran, , Twicken, , Quintana, , Clarke, , Allen, , Li, , Wu, , Tenenbaum, , Verner, , Bruhweiler, , Barnes, , Prsa, . 2011, ApJ, 736, id.19CrossRefGoogle Scholar
Brown, T. M., Latham, D. W., Everett, M. E., & Esquerdo, G. A. 2011, AJ submitted, arXiv:1102.0342Google Scholar
Bromley, B. C. & Kenyon, S. J. 2011, ApJ, 731, 101CrossRefGoogle Scholar
Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580CrossRefGoogle Scholar
Chatterjee, S., Ford, E. B., & Rasio, F. A. 2011, this volumeGoogle Scholar
Cox, A. N., ed. 2000, Allen's Astrophysical Quantities (Springer)Google Scholar
Cumming, A., Butler, R. P., Marcy, G. W., Vogt, S. S., Wright, J. T., & Fischer, D. A. 2008, PASP, 120, 531CrossRefGoogle Scholar
Fischer, D. A. & Valenti, J. 2005, ApJ, 622, 1102CrossRefGoogle Scholar
Ford, E. B., Lystad, V., & Rasio, F. A. 2005, Nature, 434, 873CrossRefGoogle Scholar
Ford, E. B. & Rasio, F. A. 2008, ApJ, 686, 621CrossRefGoogle Scholar
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007 a, ApJ, 668, 1267CrossRefGoogle Scholar
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007 b, ApJ, 659, 1661CrossRefGoogle Scholar
Gilliland, R. L., et al. 2000, ApJL, 545, L47CrossRefGoogle Scholar
Howard, A. W., et al. 2010, Science, 330, 653CrossRefGoogle Scholar
Howard, A. W., et al. 2011 a, ApJ, 726, 73CrossRefGoogle Scholar
Howard, A. W. & Marcy, G., The Kepler Team 2011b, ApJ, submitted (arXiv:1103.2541)Google Scholar
Ida, S. & Lin, . 2008 a, ApJ, 673, 487CrossRefGoogle Scholar
Ida, S. & Lin, . 2008 b, ApJ, 685, 584CrossRefGoogle Scholar
Ida, S. & Lin, . 2010, ApJ, 719, 810CrossRefGoogle Scholar
Jenkins, J. M., et al. 2010 a, ApJ, 724, 1108CrossRefGoogle Scholar
Jenkins, J. M., et al. 2010 b, ApJL, 713, L120CrossRefGoogle Scholar
Jenkins, J. M., et al. 2010 c, ApJL, 713, L87CrossRefGoogle Scholar
Johnson, J. A., Aller, K. M., Howard, A. W., & Crepp, J. R. 2010, PASP, 122, 905CrossRefGoogle Scholar
Johnson, J. A., Winn, J. N., Albrecht, S., Howard, A. W., Marcy, G. W., & Gazak, J. Z. 2009, PASP, 121, 1104CrossRefGoogle Scholar
Kepler Mission Team. 2009, VizieR Online Data Catalog, 5133Google Scholar
Koch, D. G., et al. 2010 a, ApJL, 713, L131CrossRefGoogle Scholar
Koch, D. G., et al. 2010 b, ApJL, 713, L79CrossRefGoogle Scholar
Lissauer, J. J., Hubickyj, O., D'Angelo, G., & Bodenheimer, P. 2009, Icarus, 199, 338CrossRefGoogle Scholar
Lissauer, J. J., et al. 2011 a, Nature, 470, 53CrossRefGoogle Scholar
Lissauer, J. J., et al. 2011 b, ApJ, submitted (arXiv:1102.0543)Google Scholar
Lithwick, Y. & Wu, Y. 2010, ApJ, submitted (arXiv:1012.3706)Google Scholar
Marcy, G., Butler, R. P., Fischer, D., Vogt, S., Wright, J. T., Tinney, C. G., & Jones, H. R. A. 2005 a, Progress of Theoretical Physics Supplement, 158, 24CrossRefGoogle Scholar
Marcy, G. W., Butler, R. P., Vogt, S. S., Fischer, D. A., Henry, G. W., Laughlin, G., Wright, J. T., & Johnson, J. A. 2005 b, ApJ, 619, 570CrossRefGoogle Scholar
Marcy, G. W., et al. 2008, Physica Scripta, 130, 014001CrossRefGoogle Scholar
Mayor, M., et al. 2009, A&A, 493, 639Google Scholar
Moorhead, A. V., et al. 2011, ApJ, submitted (arXiv:1102.0547)Google Scholar
Mordasini, C., Alibert, Y., Benz, W., & Naef, D. 2009, A&A, 501, 1161Google Scholar
Mordasini, C., Alibert, Y., Benz, W., & Klahr, H. 2011, EPJ Web of Conferences, 11, 04001CrossRefGoogle Scholar
Morton, T. D. & Johnson, J. A. 2011, ApJ, in press (arXiv:1101.5630)Google Scholar
Raymond, S. N., et al. 2011, A&A, 530, A62Google Scholar
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523Google Scholar
Schlaufman, K. C., Lin, D. N. C., & Ida, S. 2010, ApJL, 724, L53CrossRefGoogle Scholar
Udry, S. & Santos, N. C. 2007, ARA&A, 45, 397Google Scholar
Wittenmyer, R. A., Tinney, C. G., Butler, R. P., O'Toole, S. J., Jones, H. R. A., Carter, B. D., Bailey, J., & Horner, J. 2011, ApJ, submitted (arXiv:1103.4186)Google Scholar
Wright, J. T., Upadhyay, S., Marcy, G. W., Fischer, D. A., Ford, E. B., & Johnson, J. A. 2009, ApJ, 693, 1084CrossRefGoogle Scholar
Wu, Y. & Lithwick, Y. 2011, ApJ, 735, id.109CrossRefGoogle Scholar