Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T12:57:13.305Z Has data issue: false hasContentIssue false

Observations of planet-forming volatiles

Published online by Cambridge University Press:  27 October 2016

Klaus M. Pontoppidan*
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Water is observed to be a major constituent of planet-forming disks around young stars and its presence likely plays a major role in formation of planets and their atmospheres, including those destined to orbit in a habitable zone. Yet, the path from disks to planets is one fraught with complexity, making it difficult to derive precise theoretical predictions for planetary chemistry. Planet-forming disks are no longer considered uniform well-mixed structures; rather, they are complex worlds with many different heterogenous environments, most of which play some part in determining the composition of planetesimals and planets. Direct observations of atomic and molecular abundances on all size scales are therefore needed for understanding planet formation at a very fundamental level, and for answering the question of how chemically common the Earth is among exoplanets. In the past years, great progress has been made in observing protoplanetary chemistry, in particular in measuring the molecular composition in protoplanetary disks across the planet-forming regions from 1 to 10s of AU. We will present recent observations of water with Herschel, the VLT and Gemini in disks, and we will demonstrate how we retrieve the local abundances and radial distribution of water vapor and ice using detailed radiative transfer models. We find that most of the oxygen is likely bound in water near 1 AU in disks around solar-mass stars and that the disk surface composition at these radii is likely dominated by local gas-phase chemistry rather than by primordial material delivered from the interstellar medium. We discuss how these observations relate to complementary constraints from the solar system. We further discuss the implications for the observed composition of exoplanetary atmospheres.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

ALMA Partnership, Brogan, C. L., Pérez, L. M., et al. 2015, ApJ (Letters) 808, L3 Google Scholar
Banzatti, A. & Pontoppidan, K. M. 2015, ApJ 809, 167 CrossRefGoogle Scholar
Banzatti, A. & Pinilla, P., et al. 2015, ApJ (Letters) submittedGoogle Scholar
Bergin, E. A., Cleeves, L. I., Gorti, U., et al. 2013, Nature 493, 644 CrossRefGoogle Scholar
Blevins, S. M., Pontoppidan, K. M., Banzatti, A., Zhang, K., Najita, J., Carr, J. S., Salyk, C., & Blake, G. A. 2015, ApJ submittedGoogle Scholar
Carr, J. S. & Najita, J. R. 2008, Science 319, 1504 CrossRefGoogle Scholar
Dipierro, G., Price, D., Laibe, G., et al. 2015, MNRAS 453, L73 CrossRefGoogle Scholar
Dodson-Robinson, S. E., Willacy, K., Bodenheimer, P., Turner, N. J., & Beichman, C. A. 2009, Icarus 200, 672 CrossRefGoogle Scholar
Gonzalez, J.-F., Laibe, G., Maddison, S. T., Pinte, C., & Ménard, F. 2015, MNRAS 454, L36 CrossRefGoogle Scholar
Hogerheijde, M. R., Bergin, E. A., Brinch, C., Cleeves, L. I., Fogel, J. K. J., Blake, G. A., Dominik, C., Lis, D. C., Melnick, G., Neufeld, D., Panić, O., Pearson, J. C., Kristensen, L., Yildiz, U. A., & van Dishoeck, E. F. 2011, Science 334, 338 CrossRefGoogle Scholar
Kamp, I., Thi, W.-F., Meeus, G., Woitke, P., Pinte, C., Meijerink, R., Spaans, M., Pascucci, I., Aresu, G., & Dent, W. R. F. 2013, A&A 559, A24 Google Scholar
Lambrechts, M. & Johansen, A. 2012, A&A 544, A32 Google Scholar
Levison, H. F., Thommes, E., & Duncan, M. J. 2010, AJ 139, 1297 CrossRefGoogle Scholar
Lodders, K. 2003, ApJ, 591, 1220 CrossRefGoogle Scholar
Lorén-Aguilar, P. & Bate, M. R. 2015, MNRAS 453, L78 CrossRefGoogle Scholar
Malfait, K., Waelkens, C., Bouwman, J., de Koter, A., & Waters, L. B. F. M. 1999, A&A 345, 181 Google Scholar
McClure, M. K., Espaillat, C., Calvet, N., Bergin, E., D'Alessio, P., Watson, D. M., Manoj, P., Sargent, B., & Cleeves, L. I. 2015, ApJ 799, 162 CrossRefGoogle Scholar
Morbidelli, A., Lambrechts, M., Jacobson, S., & Bitsch, B. 2015, Icarus 258, 418 CrossRefGoogle Scholar
Öberg, K. I., Guzmán, V. V., Furuya, K., Qi, C., Aikawa, Y., Andrews, S. M., Loomis, R., & Wilner, D. J. 2015, Nature 520, 198 CrossRefGoogle Scholar
Okuzumi, S., Momose, M., Sirono, S.-i., Kobayashi, H., & Tanaka, H. 2015, arXiv:1510.03556Google Scholar
Picogna, G. & Kley, W. 2015, arXiv:1510.01498Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996, Icarus 124, 62 CrossRefGoogle Scholar
Pontoppidan, K. M. & Blevins, S. M. 2014, Faraday Discussions 169, 49 CrossRefGoogle Scholar
Pontoppidan, K. M., Salyk, C., Blake, G. A., & Käufl, H. U. 2010, ApJ (Letters) 722, L173 CrossRefGoogle Scholar
Salyk, C., Lacy, J. H., Richter, M. J., Zhang, K., Blake, G. A., & Pontoppidan, K. M. 2015, ApJ (Letters) 810, L24 CrossRefGoogle Scholar
Zhang, K., Blake, G. A., & Bergin, E. A. 2015, ApJ (Letters) 806, L7 CrossRefGoogle Scholar