Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T01:34:46.123Z Has data issue: false hasContentIssue false

Observations of flux rope formation prior to coronal mass ejections

Published online by Cambridge University Press:  06 January 2014

Lucie M. Green
Affiliation:
Mullard Space Science Laboratory, UCL, Holmbury St. Mary, Dorking, Surrey, UK
Bernhard Kliem
Affiliation:
University of Potsdam, Institute of Physics & Astronomy, Potsdam, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding the magnetic configuration of the source regions of coronal mass ejections (CMEs) is vital in order to determine the trigger and driver of these events. Observations of four CME productive active regions are presented here, which indicate that the pre-eruption magnetic configuration is that of a magnetic flux rope. The flux ropes are formed in the solar atmosphere by the process known as flux cancellation and are stable for several hours before the eruption. The observations also indicate that the magnetic structure that erupts is not the entire flux rope as initially formed, raising the question of whether the flux rope is able to undergo a partial eruption or whether it undergoes a transition in specific flux rope configuration shortly before the CME.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, ApJ, 510, 484Google Scholar
Aulanier, G., Török, T., Démoulin, P., & DeLuca, E. 2010, ApJ, 708, 314Google Scholar
Canfield, R. C., Hudson, H. S., & McKenzie, D. E. 1999, GeoRL, 26, 627Google Scholar
Golub, L., Deluca, E., Austin, G., et al. 2007, Solar Phys., 243, 63Google Scholar
Green, L. M. & Kliem, B. 2009, ApJ, 700, L83Google Scholar
Green, L. M., Kliem, B., & Wallace, A. J. 2011, A&A, 526, 2Google Scholar
Jiang, Y., Chen, H., Shen, Y., Yang, L., & Li, K. 2007, Solar Phys., 240, 77Google Scholar
Liu, R., Liu, C., Wang, S., Deng, N., & Wang, H. 2010, ApJ, 725, 84Google Scholar
Mackay, D. H., Green, L. M., & van Ballegooijen, A. A. 2011, ApJ, 729, 97CrossRefGoogle Scholar
Mandrini, C. H., Pohjolainen, S., Dasso, S., et al. 2005, A&A, 434, 725Google Scholar
McKenzie, D. E. & Canfield, R. C. 2008, A&A, 481, 65Google Scholar
Min, S. & Chae, J. 2009, Solar Phys., 258, 203Google Scholar
Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. 2001, ApJ, 552, 833Google Scholar
Pevtsov, A. A. 2002a, in Martens, P.C.H. and Cauffman, D. (eds.), “Multi-Wavelength Observations of Coronal Structure and Dynamics – Yohkoh 10th Anniversary Meeting”, p.125Google Scholar
Pevtsov, A. A. 2002b, Solar Phys., 207, 111Google Scholar
Pevtsov, A. A., Canfield, R. C., & McClymont, A. N. 1997, ApJ, 481, 973Google Scholar
Rust, D. M. & Kumar, A. 1996, ApJ, 464, 199Google Scholar
Savcheva, A. S., Green, L. M., van Ballegooijen, A. A., & DeLuca, E. 2012, ApJ, 759, 105Google Scholar
Su, Y., Golub, L., & van Ballegooijen, A. A., et al. 2007, PASJ, 59, 785Google Scholar
Titov, V. S. & Démoulin, P. 1999, A&A, 351, 707Google Scholar
Török, T. & Kliem, B. 2005, ApJ, 630, L97CrossRefGoogle Scholar
van Ballegooijen, A. A. & Martens, P. C. H. 1989, ApJ, 343, 971Google Scholar
Zharkov, S., Green, L. M., Matthews, S. A., & Zharkova, V. V. 2011, ApJ, 741, L35Google Scholar