No CrossRef data available.
Published online by Cambridge University Press: 23 December 2024
We study the m = 1 high-latitude inertial mode and its contribution to the latitudinal transport of the Sun’s angular momentum. Ring-diagram helioseismology applied to 5° tiles is used to obtain the horizontal flows near the surface of the Sun. Using 10 years of data from SDO/HMI, we report on the horizontal eigenfunction and Reynolds stress $\[{Q_{\theta \phi }} = \langle {u'_\theta }{u'_\phi }\rangle \]$ for the m = 1 high-latitude inertial mode (frequency –86.3 nHz, critical latitudes ±58°). We find that Qθφ takes significant values above the critical latitude and is positive (negative) in the northern (southern) hemisphere, implying equatorward transport of angular momentum. The Qθφ peaks above latitude 70° with a value of 38 m2/s2.