Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T05:19:15.108Z Has data issue: false hasContentIssue false

Observational review on global waves

Published online by Cambridge University Press:  01 September 2007

D. Banerjee*
Affiliation:
Indian Institute of astrophysics, Koramangala, Bangalore 560034, India email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With multi-wavelength observations from ground and space-based instruments it has been possible to detect waves in a number of different wavelengths simultaneously and to, consequently, study their propagation properties. High-resolution wave observations combined with forward MHD modelling can give an unprecedented insight into the connectivity of the magnetized solar atmosphere, which further gives us a realistic chance to construct the structure of the magnetic field in the stellar atmosphere. This type of exploration is also termed as magnetic seismology. In this review I will focus on global waves, like EIT waves. I will also address the possibility of finding out the properties of magnetic structures while studying the interaction of global waves with coronal loops. A Promising new way to probe stellar atmosphere is to use our knowledge of coronal seismology on the Sun and to apply it to more distant stars. It will also enable us to measure properties such as the lengths of loops linked with stellar flares and the strengths of coronal magnetic fields on stars. In the last part I will review the current status of the stellar coronal seismology.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Andrews, A. D. 1990, A&A, 239, 235Google Scholar
Attrill, G. D. R., Harra, L. K.van Driel-Gesztelyi, L., & Démoulin, P. 2007, ApJ, 656, L101CrossRefGoogle Scholar
Ballai, I., Erdélyi, R., & Pintér, B. 2005, ApJ, 633, L145CrossRefGoogle Scholar
Ballai, I., Thelen, J. C., & Roberts, B. 2003, A&A, 404, 701Google Scholar
Biesecker, D.A., Myers, D.C., Thompson, B.J., Hammer, D.M., & Vourlidas, A. 2002, ApJ, 569, 1009CrossRefGoogle Scholar
Delannée, C., Hochedez, J.-F., & Aulanier, G. 2007a, A&A, 465, 603Google Scholar
Delannée, C., Török, T., Aulanier, G., & Hochedez, J.-F. 2007b, Solar Phys., Online first, DOI:10.1007/s11207-007-9085-4CrossRefGoogle Scholar
Eto, S. et al. 2002, PASJ, 54, 481CrossRefGoogle Scholar
Harra, L.K., & Sterling, A.C. 2003, ApJ, 587, 429CrossRefGoogle Scholar
Hudson, H. S., Khan, J. I., Lemen, J. R., Nitta, N. V., & Uchida, Y. 2003, Solar Phys., 212, 121CrossRefGoogle Scholar
Khan, J. I., & Hudson, H. S. 2000, Geophysical Research Letters, 27, 1083CrossRefGoogle Scholar
Khan, J.I., & Aurass, H. 2002, A&A, 383, 1018Google Scholar
Klassen, A., Aurass, H., Mann, G., & Thompson, B.J. 2000, A&AS, 141, 357Google Scholar
Mathioudakis, M., Seiradakis, J. H., Williams, D. R., et al. 2003, A&A, 403, 1101Google Scholar
Mitra-Kraev, U., Harra, L.K., Williams, D.R., & Kraev, E. 2005, A&A, 436, 1041Google Scholar
Meyer, F. 1968, in: Kiepenheuer, K. O. (ed.) Structure and Development of Solar Active Regions, (Dordrecht: Reidel), IAU Symp. 35, p485CrossRefGoogle Scholar
Moreon, G., 1960, AJ, 65, 494CrossRefGoogle Scholar
Moreton, G.F., & Ramsey, H.E. 1960, PASP, 72, 357CrossRefGoogle Scholar
Narukage, N., Hudson, H.S., Morimoto, T. et al. 2002, ApJ, 572, L109CrossRefGoogle Scholar
Narukage, N., Morimoto, T., Kadota, M. et al. , 2004, PASJ, 56, L5Google Scholar
Okamoto, et al. , 2004, ApJ, 608, 1124CrossRefGoogle Scholar
Ramsey, H., & Smith, S. F. 1965, AJ, 70, 688CrossRefGoogle Scholar
Rodonó, M. 1974, A&A, 32, 337Google Scholar
Roberts, B.Edwin, P. M., & Benz, A. O. 1984, ApJ, 279, 957CrossRefGoogle Scholar
Smith, S. F., & Ramsey, H. E., 1964, Zeitschrift für Astrophysik, 60, 1Google Scholar
Smith, S.F, & Harvey, K.L., 1971, in: Macris, C.J. (ed.), Physics of the solar corona,(Dordrecht: Reidel), p.156Google Scholar
Thompson, B.J., Gurman, J.B., Neupert, W.M. et al. 1999, AJ, 517, 151CrossRefGoogle Scholar
Thompson, B. J., Reynolds, B., Aurass, H., et al. 2000, Solar Phys., 193, 161CrossRefGoogle Scholar
Uchida, Y. 1968, Solar Phys., 4, 30CrossRefGoogle Scholar
Uchida, Y., Altschuler, M. D., & Newkirk, G. 1973, Solar Phys., 28, 49CrossRefGoogle Scholar
Warmuth, A. et al. 2001, ApJ, 560, L105CrossRefGoogle Scholar
Warmuth, A., Mann, G. & Aurass, H. 2005, ApJ, 626, L121CrossRefGoogle Scholar
Wills-Davey, M. J., & Thompson, B. J. 1999, Solar Phys., 190, 467CrossRefGoogle Scholar
Wills-Davey, M. J. 2006, ApJ, 645, 757CrossRefGoogle Scholar
Wills-Davey, M. J., DeForest, C. E., & Stenflo, J. O. 2007, ApJ, 664, 556CrossRefGoogle Scholar