Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T19:21:54.906Z Has data issue: false hasContentIssue false

Observational Properties of Miras in the KELT Survey

Published online by Cambridge University Press:  30 December 2019

R. A. Arnold
Affiliation:
Dept. of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 emails: [email protected], [email protected], [email protected]
M. Virginia McSwain
Affiliation:
Dept. of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 emails: [email protected], [email protected], [email protected]
Joshua Pepper
Affiliation:
Dept. of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 emails: [email protected], [email protected], [email protected]
Keivan G. Stassun
Affiliation:
Dept. of Physics and Astronomy, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a catalog of the observed properties of Mira-type variable stars detected with the Kilodegree Extremely Little Telescope (KELT). Asymptotic giant branch (AGB) candidates were identified in KELT using a combination of photometric data from KELT and 2MASS colors. Of the 4 million objects with KELT photometry, 3332 Mira-like variables were identified. Here, we present their observed periods and luminosities which will place important constraints on future theoretical work on the effect convection has on pulsation periods and mode stability.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., et al. 2018, AJ, 156, 58 10.3847/1538-3881/aacb21CrossRefGoogle Scholar
Green, G. M. et al. 2018, MNRAS, 478, 651 10.1093/mnras/sty1008CrossRefGoogle Scholar
Houdashelt, M. L., Bell, R. A., Sweigart, A. V., & Wing, R. F. 2000, AJ, 119, 1424 10.1086/301244CrossRefGoogle Scholar
Kerschbaum, F., Lebzelter, T. & Mekul, L. 2010, A&A, 524, 87 Google Scholar
Paxton, B., et al. 2011, ApJS, 192, 3 10.1088/0067-0049/192/1/3CrossRefGoogle Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. 1992, Numerical Recipes in C, 2nd ed. (New York: Cambridge University Press)Google Scholar
Stetson, P. B. 1996, PASP, 108, 851 10.1086/133808CrossRefGoogle Scholar
Tamuz, O., Mazeh, T. & North, P. 2006, MNRAS, 367, 1521 10.1111/j.1365-2966.2006.10049.xCrossRefGoogle Scholar
Townsend, R. H. D. & Teitler, S. A. 2013, MNRAS 435, 3406 10.1093/mnras/stt1533CrossRefGoogle Scholar
Vogt, N., Contreras-Quijada, A., Fuentes, , Morales, I., et al. 2016, ApJS, 227, 6 10.3847/0067-0049/227/1/6CrossRefGoogle Scholar
Whitelock, P. A. 2012, Ap&SS, 341, 123 Google Scholar
Whitelock, P. A., Feast, M. W., & Van Leeuwen, F 2008, MNRAS, 386, 313 10.1111/j.1365-2966.2008.13032.xCrossRefGoogle Scholar
Zechmeister, M. & Kürster, M. 2009, A&A, 496, 577 Google Scholar