Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T11:09:13.470Z Has data issue: false hasContentIssue false

Obliquity Variability of Terrestrial Planets in the Habitable Zone

Published online by Cambridge University Press:  13 January 2020

Yutong Shan
Affiliation:
Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138, USA email: [email protected]
Gongjie Li
Affiliation:
Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138, USA email: [email protected] Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Obliquity (axial tilt) and its variability could play an important role in the climate and habitability of a planet. We explore the spin-axis dynamics of two specific habitable zone exoplanets, Kepler-62f and Kepler-186f, using numerical and analytical techniques. Based on our current understanding of their orbital architecture, we find that, in contrast with the typical conditions in the Solar System, Kepler-62f and 186f should have low obliquity variations except in fine-tuned conditions. Extra undetected planetary companions and/or the existence of a satellite could either stabilize or destabilize obliquities at a variety of values.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Barclay, T., Burke, C. J., Howell, S. B., et al. 2013, ApJ, 768, 101CrossRefGoogle Scholar
Borucki, W. J., Agol, E., Fressin, F., et al. 2013, Science, 340, 587Google Scholar
Chen, J., & Kipping, D. 2017, ApJ, 834, 17CrossRefGoogle Scholar
Laskar, J., Joutel, F., & Robutel, P. 1993, Nature, 361, 615CrossRefGoogle Scholar
Li, G., & Batygin, K. 2014, ApJ, 790, 69CrossRefGoogle Scholar
Lissauer, J. J., Barnes, J. W., & Chambers, J. E. 2012, Icarus, 217, 77CrossRefGoogle Scholar
Quintana, E. V., Barclay, T., Raymond, S. N., et al. 2014, Science, 344, 277Google Scholar
Shan, Y. & Li, G. 2018, AJ, 155, 237CrossRefGoogle Scholar
Torres, G., Kipping, D. M., Fressin, F., et al. 2015, ApJ, 800, 99CrossRefGoogle Scholar
Touma, J., & Wisdom, J. 1993, Science, 259, 1294CrossRefGoogle Scholar
Ward, W. R. 1974, J. Geophys. Res., 79, 3375CrossRefGoogle Scholar
Williams, D. M., & Kasting, J. F. 1997, Icarus, 129, 254CrossRefGoogle Scholar